

CSSE 230 Day 11

Size vs height in a Binary Tree

After today, you should be able to...
... use the relationship between the size and height of a tree to find the maximum and minimum number of nodes a binary tree can have
...understand the idea of mathematical induction as a proof technique

Team project starts next week - Can voice preferences for partners for the term project (groups of 3)

- EditorTrees partner preference survey on Moodle
- Preferences balanced with experience level + work ethic
- If course grades close, l'll honor mutual prefs.
- If no mutual pref, best to list several potential members.
- If you don't want to work with someone, l'll honor that. But if your homework or exam average is low, I will put you with others in a similar position. Sorry if that's not your preference, but I can't burden someone who is doing well with someone who isn't.
- Consider asking potential partners these things:
- Are you aiming to get an A, or is less OK?
- Do you like to get it done early or to procrastinate?
- Do you prefer to work daytime, evening, late night?
- How many late days do you have left?
- Do you normally get a lot of help on the homework?
- Do it tonight, or by April 9.

Other announcements

- HW4 late day extends until Saturday night (April 9). 8 days for the price of 1.
- Good opportunity to catch up
- Don't blow it off
- Today:
- Size vs height of trees: patterns and proofs
- Wrapping up the BST assignment, and worktime.

Extreme Trees

- A tree with the maximum number of nodes for its height is a full tree.
- Its height is $\mathrm{O}(\log \mathrm{N})$
- A tree with the minimum number of nodes for its height is essentially a \qquad - Its height is O(N)
- Height matters!
- Recall that the algorithms for search, insertion, and deletion in a binary search tree are $\mathrm{O}(\mathrm{h}(\mathrm{T})$)

To prove recursive properties (on trees), we use a technique called mathematical induction

- Actually, we use a variant called strong induction:

The former governor of California

Strong Induction

- To prove that $\mathrm{p}(\mathrm{n})$ is true for all $\mathrm{n}>=\mathrm{n}_{0}$:
- Prove that $p\left(n_{0}\right)$ is true (base case), and
- For all $k>\mathrm{n}_{0}$, prove that if we assume $p(j)$ is true for $n_{0} \leq j<k$, then $p(k)$ is also true
- An analogy for those who took MA275:
- Regular induction uses the previous domino to knock down the next
- Strong induction uses all the previous dominos to knock down the next!
- Warmup: prove the arithmetic series formula
- Actual: prove the formula for $N(T)$

