
More BinaryTree methods
Tree Traversals

Exam review

Q1

After today, you should be able to…
… traverse trees on paper & in code

 Submit day 5 quiz now (section 1 only)

 Doublets is next assignment.

 Also with a partner – find partner now.

 Instructor demo

 Optional Exam 1 review sessions:
◦ Weds night, 9:00 pm: Percopo classroom with TA, David Robinson
◦ Thursday, hours 6-7, Olin 157 with instructors

 Please complete the Stacks&Queues partner evaluation in Moodle
after you submit your final code.

 Observation about Stacks and Queues Infix  Postfix problem
 Why must I use a StringBuilder?

◦ Strings are immutable. If you build your string character-by-character by
using
 s += “*”
 It is like growing an array using the +1 scheme

◦ StringBuilders have internal capacity. If you build your string character-by-
character using a StringBuilder,
 sb.append(“*”)
 It is like growing an array using …

◦ Not again?! 

Dr. B’s quiz: What became clear to you as a result of class?

CSSE230 student: I was treeted to some good knowledge by the time I leaft.

4 possibilities for children (leaf,
Left only, Right only, Both)

1 possibility for children: Both
(which could be NULL_NODE)

NULL

Simpler

Simpler

Comment out unused tests and
uncomment as you go

Write containsNonBST(T item) now.

 If (node is null)
◦ Return something

simple

 Recurse to the left

 Recurse to the right

 Combine results
with this node

 If (node is null)
◦ Return something

simple

 Recurse to the left

 Recurse to the right

 Combine results
with this node

 If (node is null)
◦ Return something

simple

 Recurse to the left

 Recurse to the right

 Combine results
with this node

 If (node is null)
◦ Return something

simple

 Recurse to the left

 Recurse to the right

 Combine results
with this node

 Print the tree
contents

 Sum the values of
the nodes

 Dump the contents
to an array list

 Lots more

 In what order
should we print
nodes?

 InOrder (left-to-right, if tree is spread out)
◦ Left, root, right

 PreOrder (top-down, depth-first)
◦ root, left, right

 PostOrder (bottom-up)
◦ left, right, root

 LevelOrder (breadth-first)
◦ Level-by-level, left-to-right within each level

2-6

If the tree
has N
nodes,
what’s the
(worst-
case)
big-Oh
run-time
of each
traversal?

 Brainstorm how to write:

public ArrayList<T> toArrayList()

 Then BST toString() will simply be:

return toArrayList().toString();

6

Size(), height(), contains(), toArrayList(),
toString(), etc.

What if we want an iterator (one element at a
time)?

Next class

 Exam 1 – Day 8: 7-9 pm
◦ Coverage:

 Everything from reading and lectures, Sessions 1-7

 Programs: Warmup, Stacks and Queues

 Homeworks 1-2

◦ Allowed resources:
 Written part: ½ of one side of 8.5 x 11 paper

 Goal: to let you use formulas but force you to summarize.

 Programming part:
 Textbook

 Eclipse (including programs you wrote in your repos)

 Course web pages and materials on Moodle

 Java API documentation

 A previous 230 Exam 1 is available in Moodle

1

◦ Written (50-70%):

 Growable Arrays

 MCSS

 big O/q/W: true/false, using definitions, limits,
code analysis

 Binary search

 ADT/Collections

 Choosing an ADT to solve a given problem

◦ Programming (30-50%):

 Implementing an ADT using an array, nodes, or
another ADT

 All data structures really boil down to:
◦ Continuous memory (arrays), or

◦ Nodes and pointers (linked lists, trees, graphs)

 Let’s draw pics of each

 Then you do the questions on the back with a
partner as exam review

 Then time for questions

