A
|

B
CITTTTTTIT) LT

é CSSE 230 Day 5

Abstract Data Types

& & Data Structure “Grand Tour”

Java Collections
2T

L850

http://gcc.gnu.org/onlinedocs/libstdc++ /images/pbds_different_underlying_dss_1.png

Announcements

» Stacks and Queues
> |deally, you have met with your partner to start

> Try your best to work well together, even if you
have different amounts of programming
experience.

» Finish day 4 + quiz with instructor if needed.

How is Homework 2 coming?

» From question 2:

Suppose T,(N) is O(f(N)) and T,(N) is O(f(N)). Prove
that T,(N) + T,(N) is O(f(N)) or give a counter-
example:

» Hint: Constants c¢1 and c2 must exist for T,(N)
and T,(N) to be O(f(N))

- How can you use them?

» Does this work exactly like this for T,;(N) - T,(N) ?
» Remember, O isn’t a tight bound.

After tod

» explain w

» LIst exam
framewor

» LiIst exam

ay, you should be able to...

nat an Abstract Data Type (ADT) is

nles of ADTs in the Collections
K (from HW2 #1)

nles of data structures that

implement the ADTs in the Collections
framework

» Choose an ADT and data structure to solve a

problem

What is an Abstract Data Type
(ADT)?

» A mathematical model of a data type
» Specifies:
- The type of data stored

- The operations supported
- Argument types and return types of these operations

- What each operation does, but not how

An Example ADT:
Non-negative integers

» One special value: zero
» Three basic operations:
° SUCC
> pred
- 1sZero
» Derived operations include plus
» Sample rules:

- 1isZero(succ(n)) = false

- pred(succ(n)) = n

- plus(n, zero) = n

> plus(n, succ(m)) = succ(plus(n, m))

ADTs for collections of items

Application:
“how can you use that?”

public static void main(String[] args) {

Scanner scanner = new Scanner(System.in);
Arraylist<SingleDie> dice = new Arraylist<SingleDie>();
while (true) {
System.out.printf("How many sides (Q to quit):")};
String response = scanner.next();

if (Character.tolUpperCase(response.charAt(8)) == 'Q') { ArrayList (Collection<? extend
break; . ..

} ’ Constructs a list containing thi

int nSides = Integer.parselInt(response);

nSides = (nSides < 4) ? 4: nSides;
dice.add(new SingleDie(nSides));
b

scanner.close();

int minSum = dice.size();

int maxSum = 8;

for (SingleDie die : dice) {
maxSum += die.getNSides();

¥

A

Specification
“what is it?”

Constructor Summary

ArraylList ()

Constructs an empty list with

ArraylList (int initialCapacity

Constructs an empty list with

ethod Summary

boolean

add (E <)
Appends the spect

void

add (int index,
Inserts the specifie

E ele

boolean

addall (Collection<?
Appends all of the

boolean

addall (int index, Co
Inserts all of the el

void

clear ()
Removes all of the

Y
CSSE220

Implementation:
“How do you do that?”

public class ArrayList<E> extends AbstractList<E>

H

implements List<E», RandomRccess, Cloneabl
private static final long serialVersionUID = &

S rx

private transient Object[] elementData;

S rx

private int size;

S rx

public ArrayList(int initialCapacity) {
super () ;
if (initialCapacity < 0)

throw new IllegalArgumentException(”Il

ini
this.elementData = new Object[initialCapac
}
e
public ArrayList() {
this(10);
}

CSSE230

Common ADTs and

implementations
» Array » Map
» List > Tree Map
> Array List > Hash Map
> Linked List » Priority Queue
» Stack » Tree
» Queue » Graph
» Set » Network
> Tree Set

- Hash Set
> Linked Hash Set

Implementations for almost all
of these* are provided by the
N

the package.

*Exceptions: Tree, Graph, Network

Often, one particular ADT and
implementation is best for the problem

» Which ADT to use?

> |t depends. How do you access your data? By
position? By key? Do you need to iterate through it?
Do you need the min/max?

» Which implementation to use?

- |t also depends. How important is fast access vs
fast add/remove? Does the data need to be ordered
in any way? How much space do you have?

Q1-9

How to figure this out?

Use Java’s Collections Framework.
o Search for Java 8 Collection

- With a partner, read the javadocs to answer the quiz
questions. You only need to submit one quiz per pair. (Put
both names at top)

v

| have used the rest of the slides when teaching
CSSE230 before.

- Maybe a good reference?

v

v

When you finish, you may work on your current
CSSE230 assignments

At the end of class, there will be a presentation by
another CSSE prof about a summer opportunity.

v

Array .

» Size must be declared when the
array is constructed

» Can look up or store items by index
Example:
nums[i1+1] = nums[i1] + 2;

» How is this done?

a[0]

a[1]

a[2]

a[i]

a[N-2]

a[N-1]

List

» A list is an ordered collection where elements
may be added anywhere, and any elements
may be deleted or replaced.

» Array List: Like an array, but growable and
shrinkable.

» Linked Lis

t:

AO 1 —

—— -

Al

A2

> A3

-

first

last

=

figure 6.19
A simple linked list

Array Lists and Linked Lists

Operations Array List Linked List
Provided Efficiency Efficiency
Random access O(1) O(n)
Add/remove item O(n) O(1)

Stack

» A last-in, first-out (LIFO)

data Stru Ctu e public static woid printInReverse (List<String> words) {
// TODO: implement

2 ReaI—WO rld StaCkS Stack<String> stack = new Stack<String>():

for (String w : words) {

> Plate dispensers in stack.push (w) ;
. ¥
the cafeteria while (!stack.isEmpty()) {
. Pancakesl System.out.println(stack.pop()):
. }

» Some uses: }

> Tracking paths through a maze
> Providing “unlimited undo” in an application

Operations Efficiency Implemented by
Provided

Push item O(1) and

Java

Pop item O(1)

/

=

Uses a gueus to print palrs of words consisting of
a word in the input and the word that appeared five
words before it.

¥ o N W K

Queue

* f
. 1 1 _ public static wvoid printCurrentAndPreceding (List<String> words) |
» first—in, first—out =t sate voud vt

ArrayDegue<String> quelus = new ArrayDeque<String>():
(FIFO) // Preloads the dqueue:
for (int 1 = 0; 1 < 5; i++) {

d ata S t ru Ct u re } queue.add ("NothWord") ;

» Real-world queues ** G2, !

String fiveRAgo = queue.remove ()

o Wa|t|ng I|ne at } System.out.println(w + ", " + fiveRlgo);

the BMV)
o Character on Star Trek TNG

» Some uses:
- Scheduling access to shared resource (e.g., printer)

Operations Efficiency
Provided

Enqueue item O(1) in
Dequeue item O(1) Java

* @param words

Implemented by
and

Set

» A collection of items without duplicates (in
general, order does not matter)

- If a and b are both in set, then 'a.equals(b)

3 ReaI—WO rld Sets: public static wvoid printSortedWords (List<String> words) |
TreeSet<String> ts = new TreeSet<String>():;
for (String w : words) {
© StUdentS ts.add(w);
. }
© CO”ECthlES for (String s : ts) {
. System.out.println(s);
» One possible use: | Example from 220

> Quickly checking if an
item is in a collection

Add/remove item O(1) O(log n)
Contains? O(1) O(log n)

M ap How is a TreeMap like a TreeSet?

How is it different?

» Associate keys with values

» Real-world “maps”
> Dictionary
- Phone book

» Some uses:

- Associating student ID with transcript
- Associating name with high scores

Operations | HashMap | TreeMap _
Insert key-value pair O(1) O(log n)

Look up the value associated O(1) O(log n)
with a given key

Can hog space . J
Sorts items by key!

HashMap/HashSet Example (220)

public static wvoid printWordCountsByLength (List<String> words) {
HashMap<Integer, HashSet<String>> map =
new HashMap<Integer, HashSet<String>>();

for (String w : words) {
int len = w.length();
HashSet<String> set;

if (map.containsKey(len)) {
set = map.get(len);
} else |

set = new HashSet<String>();
map.put (len, set):
}
set.add (w) ;
}
System.cut.printf ("%d unigue words of length 2.%n", getCount(map, 3)):
System.cut.printf ("%d unigque words of length 7.%n", getCount(map, 7)):
System.cut.printf ("%d unique words of length 9.%n", getCount(map, 9))
System.out.printf("%d unigque words of length 15.%n", getCount (map, 15

d
d

V)
}

public static int getCount (HashMap<Integer, HashSet<String>> map, int key)
if (map.containsEey(key)) {
return map.get(key) .s1ize();
} else |
return 0;

PriOrity Queue Not like regular

queues!
» Each item stored has an associated priority
> Only item with “minimum” priority is accessible
- Operations: insert, findMin, deleteMin
» Real-world “priority queue”:

o Airport ticketing counter T ey it typucnc sirinen g
3 Some uses str?ngQueue.add{"ab"];
. . str}ngQueue .add ("abcd™) ;
o Slmulatlons str}nqgueue.add("abc"l;
. . stringQueue.add("a");
’ SChEdUIIng In an OS while (stringQueue.size () > 0)
5 H uffman COd | ng System.out.println(stringQueue.remove ());
Operations Efficiency
Provided
Insert O(log n)
The version in Warm Up — , :
and Stretching isn’t this Find Min O(log n)

efficient. Delete Min O(log n)

Trees, Not Just For Sorting

» Collection of nodes
- One specialized node is the root.
- A node has one parent (unless it is the root)
- A node has zero or more children.

» Real-world “trees”:
> OQrganizational hierarchies
. - Only if tree is
Some family trees
» Some uses:
> Directory structure F0Jo[< & {1611
on a hard drive Provided
- Sorted collections Find O(log n)
Add/remove O(log n)

Graphs

» A collection of nodes and edges
- Each edge joins two nodes
- Edges can be directed or undirected
» Real-world “graph”:
- Road map
» Some uses:

> Tracking links between web pages
- Facebook

Depends on

: . - implementation
Operations Efficiency (time /space trade off)

Provided

Find O(n) /
Add/remove O(1) or O(n) or O(n?%)

Networks

» Graph whose edges have numeric labels

» Examples (labels):
- Road map (mileage)
- Airline's flight map (flying time)
> Plumbing system (gallons per minute)
- Computer network (bits/second)
» Famous problems:
> Shortest path
- Maximum flow
> Minimal spanning tree
> Traveling salesman
- Four-coloring problem for planar graphs

Common ADTs

» Array » Map
» List > Tree Map
> Array List > Hash Map
> Linked List » Priority Queue
» Stack » Tree
» Queue » Graph
» Set » Network
> Tree Set
- Hash Set

We’ll implement and use nearly
all of these, some multiple ways.

And a few other data structures.

Data Structure Summary

Array can't do it Constant-time access by position
Stack top only top only Easy to implement as an array.
O(1) O(1)
Queue front only O(1) insert rear, remove front.
O(1)
ArrayList O(log N) O(N) Constant-time access by position
Linked List O(N) O(1) O(N) to find insertion position.
HashSet/Map O(1) O(1) If table not very full
TreeSet/Map O(log N) O(log N) Kept in sorted order
PriorityQueue O(1) O(log N) Can only find/remove smallest
Tree O(log N) O(log N) If tree is balanced, O(N) otherwise
Graph O(N*M)? O(M)? N nodes, M edges

Network shortest path, maxFlow

