

After today's class you will be able to:
provide an example where an insightful algorithm can be much more efficient than a naive one.

Announcements

- Sit with your StacksAndQueues partner now
- Day 3 quizzes returned
- Why Math?

Andrew Hettlinger > Matt Boutell

November 6 at 12:30pm - 驾

In your class, I never thought I'd actually use big O notation, but now I find myself using it in my complaints to coworkers about how a previous developer would sort a list before doing a binary search to find a single element $O($ nlogn $)+O(\operatorname{logn})$ instead of just doing a linear search $O(n)$. I feel really nerdy now (as if I didn't before (P))

Like - Comment

So why would we ever sort first to do binary search?

Recap: MCSS

Problem definition: Given a non-empty sequence of n (possibly negative) integers $A_{1}, A_{2}, \ldots, A_{n}$, find the maximum consecutive subsequence $S_{i, j}=\sum_{k=i}^{j} A_{k}$, and the corresponding values of i and j.

Reminder: we use 0 -based indexing.

Recap: Eliminate the most obvious inefficiency, get $\Theta\left(\mathrm{N}^{2}\right)$

for (int $i=0 ; i<a . l e n g t h ; i++$) $($ int thisSmm $=0$;
for (int $\mathbf{j}=\mathbf{i} ; \mathbf{j}<a . l e n g t h ; j++$) $\{$ thisSum += a[j];
if (thissum $>$ maxSum) \{ maxSum = thisSum;
seqStart $=1$; seqEnd $=\mathbf{j}$;
)
)
)

MCSS is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

- Is MCSS $\theta\left(\mathrm{n}^{2}\right)$?
- Showing that a problem is $\Omega(\mathrm{g}(\mathrm{n})$) is much tougher. How do you prove that it is impossible to solve a problem more quickly than you already can?
- Can we find a yet faster algorithm?

$$
\begin{aligned}
& f(n) \text { is } O(g(n)) \text { if } f(n) \leq c g(n) \text { for all } n \geq n_{0} \\
& \text { So } O \text { gives an upper bound } \\
& f(n) \text { is } \Omega(g(n)) \text { if } f(n) \geq c g(n) \text { for all } n \geq n_{0} \\
& \text { So } \Omega \text { gives a lower bound } \\
& f(n) \text { is } \theta(g(n)) \text { if } c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for all } n \geq n_{0} \\
& \text { So } \theta \text { gives a tight bound } \\
& f(n) \text { is } \theta(g(n)) \text { if it is both } O(g(n)) \text { and } \Omega(g(n))
\end{aligned}
$$

Observations?

- Consider $\{-3,4,2,1,-8,-6,4,5,-2\}$

- Any subsequences you can safely ignore?
- Discuss with another student (2 minutes)

Observation 1

- We noted that a max-sum sequence $A_{i, j}$ cannot begin with a negative number.
- Generalizing this, it cannot begin with a prefix $A_{i, k}$ with $k<j$ whose sum is negative.
\circ Proof by contradiction. Suppose that $\mathrm{A}_{\mathrm{i}, \mathrm{j}}$ is a maxsum sequence and that $S_{i, k}$ is negative. In that case, a larger max-sum sequence can be created by removing $A_{i, k}$ However, this violates our assumption that $\mathrm{A}_{\mathrm{i}, \mathrm{j}}$ is the largest max-sum sequence.

Observation 2

- All contiguous subsequences that border the maximum contiguous subsequence must have negative or zero sums.
- Proof by contradiction. Consider a contiguous subsequence that borders a maximum contiguous subsequence. Suppose it has a positive sum. We can then create a larger max-sum sequence by combining both sequences. This contradicts our assumption of having found a max-sum sequence.

Observation 3

- No max-sum sequence can start from inside a subsequence that has a negative sum (and a negative rightmost element) and extend beyond it.
- In other words, as soon as we find that $\mathrm{S}_{\mathrm{i}, \mathrm{j}}$ is negative, we can skip all sums that begin with any of $A_{i}, A_{i+1}, \ldots, A_{j}$.
- We can "skip i ahead" to be $\mathrm{j}+1$.

New, improved code!

```
public static Result mcssLinear(int[] seq)
```

 Result result = new Result();
 result.sum = 0;
 int thisSum = 0;
 int i \(=0\);
 for (int j \(=0 ; j<\) seq.length; j++) \{
 thisSum += seq[j];
 if (thisSum > result.sum) \{
 result.sum = thisSum;
 result.startIndex = i;
 result.endIndex = j;
 \} else if (thisSum < 0) \{
 // advances start to where end
 // will be on NEXT iteration
 $\mathrm{S}_{\mathrm{i}, \mathrm{j}}$ is negative. So, skip ahead per Observation 3
i = j + 1;
thisSum $=0$;
\}
\}
return result;

> Running time is is O (?)
> How do we know?

What have we shown?

- MCSS is $O(n)$!
- Is MCSS $\Omega(\mathrm{n})$ and thus $\theta(\mathrm{n})$?
- Yes, intuitively: we must at least examine all n elements

Time Trials!

- From SVN, checkout MCSSRaces
- Study code in MCSS.main()
- For each algorithm, how large a sequence can you process on your machine in less than 1 second?

MCSS Conclusions

- The first algorithm we think of may be a lot worse than the best one for a problem
- Sometimes we need clever ideas to improve it
- Showing that the faster code is correct can require some serious thinking
- Programming is more about careful consideration than fast typing!

Interlude

- If GM had kept up with technology like the computer industry has, we would all be driving $\$ 25$ cars that got 1000 miles to the gallon. - Bill Gates

If the automobile had followed the same development cycle as the computer, a RollsRoyce would today cost \$100, get a million miles per gallon, and explode once a year, killing everyone inside.

- Robert X. Cringely

Stacks and Queues A preview of Abstract Data Types and Java Collections

This week's major program

Stacks and Queues assignment

Intro: Ideas for how to implement stacks and queues using arrays and linked lists

How to write your own growable circular Queue:

1. Grow it as needed (like day 1 exercise)
2. Wrap-around the array indices for more efficient dequeuing

Stacks and Queues implementation

Analyze implementation choices for Queues - much more interesting than stacks! (See HW)

Application: An exercise in writing cool algorithms that evaluate mathematical expressions:

Evaluate Postfix: 678 * +
(62. How?)

Convert Infix to Postfix: $6+7$ * 8
(678 * + You'll figure out how)
Both using stacks.
Read assignment for hints on how.

Meet your partner

- Plan when you'll be working
- Review the pair programming video as needed
- Check out the code and read the specification together

