
Growable Arrays Continued

Big-Oh and its cousins

Submit Growable Array exercise
Answer Q1-3 from today's in-class quiz.

Q1-3

 Finish course intro

 Growable Array recap

 Big-Oh and cousins

 After today, you’ll be able to
◦ Use the term amortized appropriately in analysis

◦ explain the meaning of big-Oh, big-Omega (W), and
big-Theta (q)

◦ apply the definition of big-Oh to prove runtimes of
functions

 Job opportunity!
◦ Workstudy student to straighten up F217 and F225 labs each

morning for ~1 hour/day. Let me or Darryl Mouck know if
interested

 The game of Go: AI beating Lee Sodol, 2-0
◦ Compare with checkers, chess.
◦ https://deepmind.com/alpha-go.html

 Remind all do piazza post (3-4 students/section left)

 Late days?

 Test policy: Individual competence requirement

https://deepmind.com/alpha-go.html

 See syllabus for exam weighting and caveats.

 Think of every program you write as a
practice test
◦ Especially HW4 and test 2a

◦ Short but intense! ~45 lines of code total in our
solutions to all but Adder

◦ Be sure to read the description of how it will be
graded. Note how style will be graded.

◦ Demo: Running the JUnit tests for test, file,
package, and project

Demo: Run the Adder program

Examples. How many times does sum++ run?

for (i = 4; i < n; i++)

sum++;

for (i = 1; i <= n; i *= 2)

sum++;

 About Homework 1?
◦ Aim to complete tonight, since it is due after next

class

◦ It is substantial

 About the Syllabus?

Q2-3

Daring to double

200

 Doubling each time:
◦ Assume that N = 5 (2k) + 1.

 Total # of array elements copied:

k N #copies

0 6 5

1 11 5 + 10 = 15

2 21 5 + 10 + 20 = 35

3 41 5 + 10 + 20 + 40 = 75

4 81 5 + 10 + 20 + 40 + 80 = 155

k = 5 (2k) + 1 5(1 + 2 + 4 + 8 + … + 2k)

Express as a closed-form expression in
terms of K, then express in terms of N

 Total # of array elements copied:

N #copies

6 5

7 5 + 6

8 5 + 6 + 7

9 5 + 6 + 7 + 8

10 5 + 6 + 7 + 8 + 9

N ???

Express as a closed-form
expression in terms of N

 What’s the average overhead cost of adding
an additional string…
◦ in the doubling case?

◦ in the add-one case?

 So which should we use?

Q4-5

This is called
the amortized
cost

Q6

x

Simplify: Note that log n (without a specified) base means log2n.

Also, log n is an abbreviation for log(n).

1. log (2 n log n)

2. log(n/2)

3. log (sqrt (n))

4. log (log (sqrt(n)))

5. log4 n

6. 22 log n

7. if n=23k - 1, solve for k.

Where do logs come from in algorithm analysis?

Simplify: Note that log n (without a specified) base means log2n.

Also, log n is an abbreviation for log(n).

1. 1+log n + log log n

2. log n - 1

3. ½ log n

4. -1 + log log n

5. (log n) / 2

6. n2

7. n+1=23k

log(n+1)=3k

k= log(n+1)/3

A: Any time we cut things in half at each step
(like binary search or mergesort)

 Algorithms may have different time
complexity on different data sets

 What do we mean by "Worst Case"?

 What do we mean by "Average Case"?

 What are some application domains where
knowing the Worst Case time complexity
would be important?

 http://cacm.acm.org/magazines/2013/2/160173-the-tail-
at-scale/fulltext

http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext

Worst-case:
O(n)

amortized:
O(1)

Big-Oh

Big-Omega

Big-Theta

 We only care what happens when N gets large

 Is the function linear? quadratic?
exponential?

Figure 5.1
Running times for small inputs

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

(linear looks
constant for
small inputs)

Figure 5.2
Running times for moderate inputs

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 5.3
Functions in order of increasing growth rate

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

a.k.a "log linear"

The answer to most big-

Oh questions is one of

these functions

 Drop lower order terms and constant factors

 7n – 3 is O(n)

 8n2logn + 5n2 + n is O(n2logn)

 Given functions f(n) and g(n), we say that f(n) is O(g(n)) if and
only if f(n) ≤ c g(n) for all n ≥ n0.

 Two constants: c > 0 is a real number and n0 ≥ 0 is an integer.

 f(n) and g(n) are functions over non-negative integers.

 A function f(n) is (in) O(g(n)) if there exist two

positive constants c and n0 such that for all n n0,
f(n) c g(n)

 So all we must do to prove that f(n) is O(g(n)) is
produce two such constants.

 f(n) = 4n + 15, g(n) = ???.

 f(n) = n + sin(n), g(n) = ???

Assume that all functions have non-negative
values, and that we only care about n≥0. For
any function g(n), O(g(n)) is a set of functions.

Q8-9

 f(n) is O(g(n)) if f(n) ≤ cg(n) for all n ≥ n0
◦ So big-Oh (O) gives an upper bound

 f(n) is W(g(n)) if f(n) ≥ cg(n) for all n ≥ n0
◦ So big-omega (W) gives a lower bound

 f(n) is q(g(n)) if it is both O(g(n) and W(g(n))
Or equivalently:

 f(n) is q(g(n)) if c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0
◦ So big-theta (q) gives a tight bound

We usually show algorithms (in code) are q(g(n)). Next class, we’ll also
discuss how to show problems are q(g(n)).

 True or false: 3n+2 is O(n3)
 True or false: 3n+2 is Θ(n3)

Q7b,c, 10

 Give tightest bound you can
◦ Saying 3n+2 is O(n3) is true, but not as useful as

saying it’s O(n)

◦ On a test, we’ll ask for Θ to be clear.

 Simplify:
◦ You could also say: 3n+2 is O(5n-3log(n) + 17)

◦ And it would be technically correct…

◦ It would also be poor taste … and your grade will
reflect that.

 There are times when one might choose a
higher-order algorithm over a lower-order
one.

 Brainstorm some ideas to share with the class

C.A.R. Hoare, inventor of quicksort, wrote:

Premature optimization is the root of all evil.

Q11

