Pick up an in-class quiz from the table near the door

CSSE 230 Data Structures and Algorithm Analysis Day 1

$$
\sum_{i=1}^{n} i=1+2+3+\ldots+n=\frac{n^{2}+n}{2}
$$

- two visual representations

Brief Course Intro Math Review
Growable Array Analysis

Introductions

, Roll call:

- Introduce yourself to the person next to you
- Then introduce that person to the class
- Where from on and off campus, one hobby/interest.
- You'll share more with classmates on discussion forum, like what work you've done that you are most proud of.
- Dr. B.
- Here since 2005
- Taught CSSE 20 (with and without robots), 220, 221, 230, Image Recognition, Android, Cryptography, Fractals, Mechatronics, Robotics senior design, advised many theses and independent studies
- Pioneering video-based online classes in CSSE

Goal: independently design, develop and debug software that uses correct, clear, and efficient algorithms and data structures

How to succeed in CSSE230

- Work hard
- Re-do CSSE220 stuff as needed to make sure your foundations (recursion and linked lists) are strong
- Take initiative in learning
- Read the text, search Javadocs, come for help
- Focus while in this class
- Start early and plan for no all-nighters
- Two assignments each week: 1 homework set and 1 major program
- Never give or use someone else's answers

Tools

- http://www.rose-hulman.edu/class/csse/csse230/201630/Schedule/: schedule, assignments, room \#s!
- www.piazza.com, not email: homework questions and announcements
- If you email, we'll usually reply, "Great question! Please post it to Piazza"
- It should auto-email you whenever there is a post.
- Posting and answering posts is a factor in citizenship grade
- moodle.rose-hulman.edu: gradebook, homework pdf turn-in, peer evaluations, solutions

After today's class, you will be able to...

- analyze runtimes of code snippets by counting instructions.
- explain why arrays need to grow as data is added.
- derive the average and worst case time to insert an item into an array [GrowableArray exercise]

Analysis/Math Review

Notation

- Floor

$$
\lfloor x\rfloor=\text { the largest integer } \leq x
$$

- Ceiling

$$
\lceil x\rceil=\text { the smallest integer } \geq x
$$

- java. lang. Math, provides the static methods floor () and ceil()

Summations

- Summations
- general definition:
$\sum_{i=s}^{t} f(i)=f(s)+f(s+1)+f(s+2)+\ldots+f(t)$
- where f is a function, s is the start index, and t is the end index

Geometric progressions: each term is a constant multiple of the previous term

- Geometric progression: $f(i)=a^{i}$
- given an integer $n \geq 0$ and a real number $0<a \neq 1$

$$
\sum_{i=0}^{n} a^{i}=1+a+a^{2}+\ldots+a^{n}=\frac{1-a^{n+1}}{1-a} \begin{gathered}
\text { Memorize } \\
\text { this } \\
\text { formula! }
\end{gathered}
$$

- geometric progressions exhibit exponential growth

Exercise: What is $\sum_{i=2}^{6} 3^{i}$?
This will be useful for today's
The sum can also be written:

$$
\frac{a^{n+1}-1}{a-1}
$$

Growable Arrays exercise!

Arithmetic progressions: constant difference Most important to us: a difference of 1

- Arithmetic progressions:
- An example

Memorize this
 formula!

$$
\begin{aligned}
& \qquad \sum_{i=1}^{n} i=1+2+3+\ldots+n=\frac{n^{2}+n}{2} \\
& \text { Exercise: } \sum_{i=21}^{40} i \quad \begin{array}{l}
\text { Also useful for today's } \\
\text { Growable Arrays exercise! }
\end{array}
\end{aligned}
$$

Visual proofs of the summation formula

$$
\sum_{i=1}^{n} i=1+2+3+\ldots+n=\frac{n^{2}+n}{2}
$$

- two visual representations

Application: Find exact and big-Oh
for (i=n-1; i>0; i--) \{ int maxPos $=0$;
for (int $\mathrm{j}=0$; $\mathrm{j}<=\mathrm{i} ; \mathrm{j}++$) $\{$
if (a[j] > maxPos) \{ maxPos $=j$;
\}
\}
swap a[maxPos] with a[i];
\}
-How many comparisons of array elements are done? -Exact? Big-Oh?
-How many times are array elements copied?

Growable Array Analysis

An exercise in doubling, done by pairs of students

Arrays are ubiquitous

- Basis for ArrayLists, sorting, and hash tables
- Why? $\mathrm{O}(1)$ access to any position, regardless of the size of the array.
- Limitation:
- Fixed capacity!
- If it fills, you need to re-allocate memory and copy items
- How efficient is this?
- Consider two schemes: "add 1 " and "double"

Work on Growable Array Exercise

- Work with a partner
- Hand in the document before you leave today if possible. Otherwise due start of day 2's class.
- Get help as needed from me and the assistants.

