
2D Trees

After today, you should be able to …
… explain insert and nearest-neighbor in 2D trees
… implement these algorithms

 A large set of (x,y) points

 Which cell phone tower is
closest to me?

 Which image is most like
this one?

 In general:
◦ Find the nearest neighbor of

a query point (today).

◦ Find or return all points in a
certain range.

1

https://personalpages.manchester.ac.uk/staff/m.dodge/cybergeography/atlas/tower_maps_large.gif
https://www.rose-hulman.edu/class/csse/csse463/201520/Slides/01%20Introduction.pdf

https://personalpages.manchester.ac.uk/staff/m.dodge/cybergeography/atlas/tower_maps_large.gif
https://www.rose-hulman.edu/class/csse/csse463/201520/Slides/01 Introduction.pdf

 List of points. Simple but slow

◦ [p1, p2, …]

◦ Find smallest of

dist(q, p1), dist(q, p2), …

2a

Representation Average nearest-nbr efficiency

List of points N

 List of points. Simple but slow

 Use a regular grid.

◦ 2D array of lists

◦ Faster, but which resolution?

◦ Example, M=8

2b

Representation Average nearest-nbr efficiency

List of points N

Regular grid 1 + N/M2

but space = N +M2, clustering
degrades

 List of points. Simple but slow

 Use a regular grid.

 ???

Representation Average nearest-nbr efficiency

List of points N

Regular grid 1 + N/M2

but space = N + M2, clustering
degrades

??? log N

 Split at 70

 Split at 20

 etc

 Any value inserted to the left of 30 must be in
what range?

3

 Each level splits the
plane in one
direction only

 Use the insert
algorithm to build a
tree from points:
A (0.5, 0.7)
B (0.75, 0.5)
C (0.7, 0.15)
D (0.8, 0.25)
E (0.45, 0.4)
F (0.9, 0.15)

4

 Initialize the closest point as the root.

 Recursively go to each side if it could be closer:
◦ To left/top and update closest if one found
◦ To right/bottom and update closest if one found
◦ When hit a null node, just return

 New idea: don’t always recurse to left/top first.
Instead, first recurse to the same side as the
query point, and then only recurse to the other
side if it could yield a closer point
◦ To do this, I suggest that each node also store the

bounds of rectangle it is part of

5

Initialize the closest point as
the root.
Recursively go to each side if
it could be closer:

◦ To left/top and update closest
if one found

◦ To right/bottom and update
closest if one found

◦ When hit a null node, just
return

New idea: don’t always
recurse to left/top first.
Instead, recurse to the same
side as the query point, and
then only recurse to the other
side if it could yield a closer
point

◦ To do this, each node will also
store the bounds of rectangle
it is part of

5

 List of points. Simple but slow

 Use a regular grid.

 Use a 2D tree

◦ You can find the nearest

neighbor efficiently

6

Representation Average nearest-nbr efficiency

List of points N

Regular grid 1 + N/M2

but space = N/M2 +1,
clustering degrades

2D tree log N

 Questions for thought:
◦ How would you build a 3D tree?

◦ … a k-d tree?

 Summarize now

 Assignment for this week:
◦ Implement insert(Point), contains(Point), and

nearest(Point) using a 2D tree

7-8

