CSSE 230

Recurrence Relations
Sorting overview

) , _ y After today, you should be able to...
O(IN*'o9ee) if a> 0% _ write recurrences for code shippets
Q(Nklogjv) if o = bF ...solve recurrences using telescoping and

k : . the master method
LO(N") if a <b

Recap: Recurrence Relation

» An equation (or inequality) that relates the
nth element of a sequence to certain of its
predecessors (recursive case)

» Includes an initial condition (base case)
» Solution: A function of n.

Solve Simple Recurrence Relations

» One strategy: find a pattern

» Examples:
> T(0) =0, T(N) = 2 + T(N-1)
- T(0) =1, T(N) = 2 T(N-1)
- T(0) =T(1) =1, T(N) = T(N-2) + T(N-T1)
> T(0) =1, T(N) = N T(N-1)
> T(0) =0, TIN) =T(N-1) + N
> T(1) =1, T(N) =2T(N/2) + N
(just consider the cases where N=2K)

Other solution strategies for
recurrence relations

» Find patterns
» Telescoping
» The master theorem

Selection Sort

public static wvoid selecticonSort(int[] a) {
//50rts a non-empty array of 1ntegers.

for (int last = a.length-1; last > 0; last--) {
// find largest, and exchange with last
int largest = a[0];
int largePosition = 0;

for (int j=1; j<=last; j++)
if (largest < aljl) {
largest = al[jl:
largePosition = J;
}

allargePosition] = allast];

allast] = largest; What’s N?
} ‘

3-4

Selection Sort: recursive version

void sort(a) { sort(a, a.length-1); }

void sort(a, last) {
if (last == @) return;
find max value in a from @ to last
swap max to last
sort(a, last-1)

5-6

Another Strategy: Telescoping

» Basic idea: tweak the relation somehow so
successive terms cancel

» Example: T(1) =1, T(N) = 2T(N/2) + N
where N = 2k for some k
» Divide by N to get a “piece of the telescope”:

T(N) = 2T(g) N
— @ = T(%) + 1

Another Strategy: Master Theorem

» For Divide-and-conquer algorithms
- Divide data into two or more parts of the same size
- Solve problem on one or more of those parts
- Combine "parts” solutions to solve whole problem
» Examples
> Binary search
- Merge Sort
- MCSS recursive algorithm we studied last time

Theorem 7.5 in Weiss

Divide and Conquer Recurrences
all have the same form

T(N) = aT(N/b) + (NF)

witha > 1,6 > 1
» Recursive part

- a = number of parts we solve
- b = number of parts we divide into

» Non-recursive part

> f(N¥) = overhead of dividing and combining
(or, the amount of work done each recursion)

The Master Theorem is convenient, but only 8,9
works for divide and conquer recurrences

» For any recurrence in the form:
T(N) = aT(N/b) + 0(N*)
witha > 1,0 >1
» The solution is

O(Nlogsa) if g > b
T(N) =< 0(N¥logN) ifa=>bF
O(NF) if @ < b¥
Example: 2T(N/4) + N

Theorem 7.5 in Weiss

Summary: Recurrence Relations

» Analyze code to determine relation

- Base case in code gives base case for relation

- Number and “size” of recursive calls determine
recursive part of recursive case

- Non-recursive code determines rest of recursive
case
» Apply one of three strategies
- Guess and check
> Telescoping
- Master theorem

10-12

Elementary Sorting Methods

v

Name as many as you can
How does each work?

Running time for each (sorting N items)?
> best

> worst

° average

- extra space requirements

Spend 10 minutes with a group of three, answering
these questions. Then we will summarize

v

v

v

Put list on board

