
Hash table basics

hashCode()“ate” mod 48594983 83 ate

…
82
83
84
…

After today, you should be able to…
…explain how hash tables perform insertion in
amortized O(1) time given enough space

1. EditorTrees M1 discussion
Unit test points and commits

2. HW6 discussion

3. Test Tuesday, 7 pm
I have all programming assignment solutions

printed in my office if you want to check and discuss.

4. Look at HW7

5. Questions on test or HW6?

Efficiently putting 5 pounds of
data in a 20 pound bag

 Implementation choices:
◦ TreeSet (and TreeMap) uses a balanced tree: O(log n)

 Uses a red-black tree

◦ HashSet (and HashMap) uses a hash table: amortized
O(1) time

 Related: maps allow insertion, retrieval, and
deletion of items by key:

Since keys are unique, they form a set.

The values just go along for the ride.

We’ll focus on sets.

1. The underlying storage?
Growable array

2. Calculate the index to store an item from
the item itself. How?

Hashcode. Fast but un-ordered.

3. What if that location is already occupied
with another item?

Collision. Two methods to resolve

hashCode()“ate” mod 48594983 83 ate

…
82
83
84
…

 Array of size m

 n elements with unique keys

 If n ≤ m, then use the key as an array
index.
◦ Clearly O(1) lookup of keys

Diagram from John Morris, University of Western Australia

 Issues?
◦ Keys must be unique.
◦ Often the range of potential keys is much larger

than the storage we want for an array
 Example: RHIT student IDs vs. # Rose students

1

2

hashCode()key integer

Objects that are .equals()
MUST have the same hashCode values
A good hashCode() also
is fast to calculate and
distributes the keys, like:

hashCode(“ate”)= 48594983
hashCode(“ape”)= -76849201 (can be negative if overflows)
hashCode(“awe”) = 14893202

 Example: if m = 100:

hashCode(“ate”)= 48594983
hashCode(“ape”)= -76849201
hashCode(“awe”) = 1489036

mod
83
46*
36

*Note: since the hashCode is an integer, it might be negative,
and negative numbers have negative remainders.

Trick: If it is negative, add Integer.MAX_VALUE to make it
positive before you mod.

 How Java’s hashCode() is used:

◦ Unless this position is already occupied

a “collision”

3-4

hashCode()“ate” mod 48594983 83 ate

…
82
83
84
…

 Default if you inherit Object’s: memory location

 Many JDK classes override hashCode()
◦ Integer: the value itself
◦ Double: XOR first 32 bits with last 32 bits
◦ String: we’ll see shortly!
◦ Date, URL, ...

 Custom classes should override hashCode()
◦ Use a combination of final fields.
◦ If key is based on mutable field, then the hashcode will

change and you will lose it!
◦ People usually use strings if possible.

5

 Advantages?

 Disadvantages?

// This could be in the String class
public static int hash(String s) {

int total = 0;

for (int i=0; i<s.length(); i++)

total = total + s.charAt(i);

return total;

}

 Spreads out the values more, and anagrams not an issue.

 What about overflow during computation?

◦ What happens to first characters?

// This could be in the String class
public static int hash(String s) {

int total = 0;

for (int i=0; i<s.length(); i++)

total = total*256 + s.charAt(i);

return total;

}

 Spread out, anagrams OK, overflow OK.

 This is String’s hashCode() method.

 The (x = 31x + y) pattern is a good one to follow.

// This could be in the String class
public static int hash(String s) {

int total = 0;

for (int i=0; i<s.length(); i++)

total = total*31 + s.charAt(i);

return total;

}

6

 A good hashcode distributes keys evenly, but
collisions will still happen

 hashCode() are ints only ~4 billion unique values.
◦ How many 16 character ASCII strings are possible?

 If n is small, tables should be much smaller
◦ mod will cause collisions too!

 Solutions:
◦ Chaining
◦ Probing (Linear, Quadratic)

7

hashCode()“ate” mod 48594983 83 ate

…
82
83
84
…

Java’s HashMap uses chaining and a table
size that is a power of 2.

8

Grow in another direction
Examples: .get(“at”), .get(“him),
(hashcode=18), .add(“him”), .delete(“with”)

9-10

m array slots,
n items.
Load factor, l=n/m.

Runtime = O(l)

Space-time trade-off
1. If m constant, then this is O(n). Why?

2. If keep m~0.5n (by doubling), then this is amortized O(1). Why?

 No need to grow in second direction

 No memory required for pointers
◦ Historically, this was important!

◦ Still is for some data…

 Will still need to keep load factor (l=n/m) low
or else collisions degrade performance
◦ We’ll grow the array again

 Probe H (see if it causes a collision)
 Collision? Also probe the next available space:
◦ Try H, H+1, H+2, H+3, …
◦ Wraparound at the end of the array

 Example on board: .add() and .get()

 Problem: Clustering

 Animation:
◦ http://www.cs.auckland.ac.nz/software/AlgAnim/has

h_tables.html

11

http://www.cs.auckland.ac.nz/software/AlgAnim/hash_tables.html

Figure 20.4
Linear probing hash

table after each

insertion

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Good example
of clustering
and wraparound

 For probing to work, 0 l 1.

 For a given l, what is the expected number
of probes before an empty location is found?

 Assume all locations are equally likely to be
occupied, and equally likely to be the next
one we look at.

 Then the probability that a given cell is full is

l and probability that a given cell is empty is
1-l.

 What’s the expected number?

12

 Clustering!
◦ Blocks of occupied cells are formed

◦ Any collision in a block makes the block bigger

 Two sources of collisions:
◦ Identical hash values

◦ Hash values that hit a cluster

 Actual average number of probes for large l:

For a proof, see Knuth, The Art of Computer Programming, Vol 3:
Searching Sorting, 2nd ed, Addision-Wesley, Reading, MA, 1998.

13

 Easy to implement

 Works well when load factor is low
◦ In practice, once l > 0.5, we usually double the size

of the array and rehash

◦ This is more efficient than letting the load factor
get high

 Reminder: Linear probing:
◦ Collision at H? Try H, H+1, H+2, H+3,...

 New: Quadratic probing:
◦ Collision at H? Try H, H+12. H+22, H+32, ...

◦ Eliminates primary clustering. “Secondary
clustering” isn’t as problematic

 Choose a prime number for the array size, m

 Then if λ ≤ 0.5:
◦ Guaranteed insertion

 If there is a “hole”, we’ll find it

◦ So no cell is probed twice

 Can show with m=17, H=6.

14

For a proof, see Theorem 20.4:

Suppose that we repeat a probe before trying more than half

the slots in the table

See that this leads to a contradiction

Contradicts fact that the table size is prime

 No one has been able to analyze it!

 Experimental data shows that it works well
◦ Provided that the array size is prime, and l < 0.5

15-17

 Finish the quiz.

 Then check your answers with the next slide

Structure insert Find value Find max value

Unsorted array

Sorted array

Balanced BST

Hash table

Structure insert Find value Find max value

Unsorted array Amortized q(1) q(n) q(n)

Sorted array q(n) q(log n) q(1)

Balanced BST q(log n) q(log n) q(log n)

Hash table Amortized q(1) q(1) q(n)

 Why use 31 and not 256 as a base in the
String hash function?

 Consider chaining, linear probing, and
quadratic probing.
◦ What is the purpose of all of these?
◦ For which can the load factor go over 1?
◦ For which should the table size be prime to avoid

probing the same cell twice?
◦ For which is the table size a power of 2?
◦ For which is clustering a major problem?
◦ For which must we grow the array and rehash every

element when the load factor is high?

 Constants matter!

 727MB data, ~190M elements
◦ Many inserts, followed by many finds
◦ Microsoft's C++ STL

 Why?

 Sorted arrays are nice if they don’t have to be
updated frequently!

 Trees still nice when interleaved insert/find

Structure build (seconds) Size (MB) 100k finds (seconds)

Hash map 22 6,150 24

Tree map 114 3,500 127

Sorted array 17 727 25

