CSSE 230 Day 15

AVL insert/Delete Review
AVLTree practice
Worktime

After today, you should be able to...
...write code to insert an item into an EditorTree using rank and

keep it balanced



After insertion into AVL or EditorTree, go up tree,
updating balance codes and checking for imbalance

» p = parent of inserted node

» while p '= null

- [/ 3 cases (=, tipped towards, tipped away)
- if p.balanceCode is '='
- set code to '/' or '\' (towards insertion point)
- p = p.getParent()
- else if p.balanceCode indicates "insertion was in
shorter subtree”
- change code to '='
- Break (STOP)
- else //insertion was into taller side.
- do the appropriate rotation

* Break (STOP) This is for Milestone 1; You will

design a similar procedure for
deletion (milestone 2)






Examples:

EditorTree et = new EditorTree()
et.add(‘a’) // append to end
et.add(‘b’) // same

et.add(‘c’) // same. Rebalance!
et.add(‘d’, 2) // where does it go?
et.add(‘e’)

et.add(‘f’, 3)

vV Vv Vv Vv VvV V9v V9

» Notice the tree is height-balanced (so height
= O(log n) ), but not a BST




What is the goal of EditorTrees?
Implementing the List ADT using a balanced tree.

» Get/Insert/delete by index
> all in O(log n) time
- .add(item) adds to end

- .add(item, index) adds it to the given index, so the
position of the item at that index (and all to the
right) increases by 1

» Efficient size and height
> using rank or maintaining fields

» Plus:
- Concatenate/Split, like String + and .substring()



Today’s agenda

» Make sure your whole team has finished and
understands yesterday’s AVL quiz
- Get them checked off

» Work with your team on the project

> | expect to see you working on paper (designing
your algorithms and understanding tests) as much
as (or more than) on the computer

» When you complete Milestone 1, you may
continue on to Milestone 2.



