
AVL insert/Delete Review
AVLTree practice

Worktime

After today, you should be able to…
…write code to insert an item into an EditorTree using rank and
keep it balanced

 p = parent of inserted node

 while p != null
◦ // 3 cases (=, tipped towards, tipped away)

◦ if p.balanceCode is '='

 set code to '/' or '\' (towards insertion point)

 p = p.getParent()

◦ else if p.balanceCode indicates "insertion was in
shorter subtree"

 change code to '='

 Break (STOP)

◦ else //insertion was into taller side.

 do the appropriate rotation

 Break (STOP)
This is for Milestone 1; You will
design a similar procedure for
deletion (milestone 2)

Like BST, except:

1. Keep height-balanced
2. Insertion/deletion by index, not by comparing elements.

So not sorted

 EditorTree et = new EditorTree()
 et.add(‘a’) // append to end
 et.add(‘b’) // same
 et.add(‘c’) // same. Rebalance!
 et.add(‘d’, 2) // where does it go?
 et.add(‘e’)
 et.add(‘f’, 3)

 Notice the tree is height-balanced (so height
= O(log n)), but not a BST

 Get/Insert/delete by index
◦ all in O(log n) time

◦ .add(item) adds to end

◦ .add(item, index) adds it to the given index, so the
position of the item at that index (and all to the
right) increases by 1

 Efficient size and height
◦ using rank or maintaining fields

 Plus:
◦ Concatenate/Split, like String + and .substring()

 Make sure your whole team has finished and
understands yesterday’s AVL quiz
◦ Get them checked off

 Work with your team on the project
◦ I expect to see you working on paper (designing

your algorithms and understanding tests) as much
as (or more than) on the computer

 When you complete Milestone 1, you may
continue on to Milestone 2.

