Height-Balanced Trees

After today, you should be able to...
...give the minimum number of nodes in a height-balanced tree ...explain why the height of a height-balanced trees is $\mathrm{O}(\log \mathrm{n})$...help write an induction proof

Team project starts next class

- Can voice preferences for partners for the term project (groups of 3, starting Thursday)
- EditorTrees partner preference survey on Moodle
- Preferences balanced with experience level + work ethic
- If course grades close, l'll honor mutual prefs.
- If no mutual pref, best to list several potential members.
- If you don't want to work with someone, I'll honor that. But if your homework or exam average is low, I will put you with others in a similar position. Sorry if that's not your preference, but I can't burden someone who is doing well with someone who isn't.
- Consider asking potential partners these things:
- Are you aiming to get an A, or is less OK?
- Do you like to get it done early or to procrastinate?
- Do you prefer to work daytime, evening, late night?
- How many late days do you have left?
- Do you normally get a lot of help on the homework?
- If you don't reply by tomorrow at 5:00 pm, no problem;

I'll just assign you.

Today's Agenda

- Announcements
- Final exam: Weds, $11 / 18,8: 00 \mathrm{am}$. If you have a conflict, let me know by Friday.
- EditorTrees partner preference survey on Moodle
- HW5 "late day" is extended until Friday of Fall break
- Another induction example
- Recap: The need for balanced trees
- Analysis of worst case for height-balanced (AVL) trees

Another induction example (we'll use this result)

- Recall our definition of the Fibonacci numbers:
- $F_{0}=0, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}$
- An exercise from the textbook
7.8 Prove by induction the formula

$$
F_{N}=\frac{1}{\sqrt{5}}\left(\left(\frac{(1+\sqrt{5})}{2}\right)^{N}-\left(\frac{1-\sqrt{5}}{2}\right)^{N}\right)
$$

Recall: How to show that property $\mathrm{P}(\mathrm{n})$ is true for all $\mathrm{n} \geq \mathrm{n}_{0}$:
(1) Show the base cases) directly
(2) Show that if $P(j)$ is true for all j with $n_{0} \leq j<k$, then $P(k)$ is true also

Details of step 2:
a. Write down the induction assumption for this specific problem
b. Write down what you need to show
c. Show it, using the induction assumption

Review: The number of nodes in a tree with height $h(T)$ is bounded

Review: Therefore the height of a tree with $N(T)$ nodes is also bounded

We want to keep trees balanced so that the run run time of BST algorithms is minimized

- BST algorithms are $\mathrm{O}(\mathrm{h}(\mathrm{T})$)
- Minimum value of $h(T)$ is $\lceil\log (N(T)+1)\rceil-1$
- Can we rearrange the tree after an insertion to guarantee that $h(T)$ is always minimized?

But keeping complete balance is too expensive!

- Height of the tree can vary from $\log \mathrm{N}$ to N
- Where would J go in this tree?
- What if we keep the tree perfectly balanced?
- so height is always proportional to $\log \mathrm{N}$
- What does it take to balance that tree?
- Keeping completely balanced is too expensive:
- $\mathrm{O}(\mathrm{N})$ to rebalance after insertion or deletion

Still height-balanced?

More precisely, a binary tree T is height balanced if
T is empty, or if
\mid height $\left(T_{L}\right)$ - height $\left(T_{R}\right) \mid \leq 1$, and
T_{L} and T_{R} are both height balanced.

What is the tallest height-balanced tree with N nodes?

Is it taller than a completely balanced tree?

- Consider the dual concept: find the minimum number of nodes for height h.

A binary search tree \mathbf{T} is height balanced if
T is empty, or if
\mid height $\left(T_{L}\right)$ - height $\left(T_{R}\right) \mid \leq 1$, and
T_{L} and T_{R} are both height balanced. maintains balance using "rotations"

Named for authors of original paper, Adelson-Velskii and Landis (1962).

- Max. height of an AVL tree with \mathbf{N} nodes is: $H<1.44 \log (N+2)-1.328=O(\log N)$

Our goal is to rebalance an AVL tree after insert/delete in $O(\log n)$ time

- Why?
- Worst cases for BST operations are $\mathbf{O}(\mathrm{h}(\mathrm{T})$)
- find, insert, and delete
- $\mathrm{h}(\mathrm{T})$ can vary from $\mathrm{O}(\log \mathrm{N})$ to $\mathrm{O}(\mathrm{N})$
- Height of a height-balanced tree is $\mathbf{O}(\log \mathrm{N})$
- So if we can rebalance after insert or delete in $\mathrm{O}(\log \mathrm{N})$, then all operations are $\mathrm{O}(\log \mathrm{N})$

