
Height-Balanced Trees

After today, you should be able to…
…give the minimum number of nodes in a height-balanced tree
…explain why the height of a height-balanced trees is O(log n)
…help write an induction proof



 Can voice preferences for partners for the term 
project (groups of 3, starting Thursday)
◦ EditorTrees partner preference survey on Moodle

 Preferences balanced with experience level + work ethic
 If course grades close, I’ll honor mutual prefs.
 If no mutual pref, best to list several potential members.
 If you don’t want to work with someone, I’ll honor that. But if 

your homework or exam average is low, I will put you with 
others in a similar position. Sorry if that’s not your 
preference, but I can’t burden someone who is doing well 
with someone who isn’t. 

 Consider asking potential partners these things:
 Are you aiming to get an A, or is less OK?
 Do you like to get it done early or to procrastinate?
 Do you prefer to work daytime, evening, late night?
 How many late days do you have left?
 Do you normally get a lot of help on the homework?

◦ If you don’t reply by tomorrow at 5:00 pm, no problem; 
I’ll just assign you.



 Announcements
◦ Final exam: Weds, 11/18, 8:00 am. If you have a 

conflict, let me know by Friday.

◦ EditorTrees partner preference survey on Moodle

◦ HW5 “late day” is extended until Friday of Fall break

 Another induction example

 Recap: The need for balanced trees

 Analysis of worst case for height-balanced 
(AVL) trees



 Recall our definition of the Fibonacci 
numbers:
◦ F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn

 An exercise from the textbook

Recall:  How to show that property P(n) is true for all n≥n0:
(1) Show the base case(s) directly
(2) Show that if P(j) is true for all j with n0≤j<k, then P(k) is true also

Details of step 2:
a. Write down the induction assumption for this specific problem
b. Write down what you need to show
c. Show it, using the induction assumption

Q1







 BST algorithms are O(h(T))

 Minimum value of h(T) is 

 Can we rearrange the tree after an insertion 
to guarantee that h(T) is always minimized?

Q2



 Height of the tree can vary from log N to N

 Where would J go in this tree?

 What if we keep the tree perfectly balanced?

◦ so height is always proportional to log N

 What does it take to balance that tree?

 Keeping completely balanced is too expensive:

◦ O(N) to rebalance after insertion or deletion

rebalance

Solution: Height Balanced Trees (less is more)

Q3



Q4

More precisely , a binary tree T is height 
balanced if 

T is empty, or if

| height( TL ) - height( TR ) |  1, and

TL and TR are both height balanced.

Still height-balanced?



A binary search tree T is height 
balanced if 

T is empty, or if
| height( TL ) - height( TR ) |  1, and

TL and TR are both height balanced.

Q5

Is it taller than a completely balanced tree?

◦ Consider the dual concept: find the minimum 
number of nodes for height h.



 Named for authors of original paper, 
Adelson-Velskii and Landis (1962).

 Max. height of an AVL tree with N nodes is:
H < 1.44 log (N+2) – 1.328 = O(log N)

Q 6-7



 Why?

 Worst cases for BST operations are O(h(T))
◦ find, insert, and delete

 h(T) can vary from O(log N) to O(N)

 Height of a height-balanced tree is O(log N)

 So if we can rebalance after insert or delete in 
O(log N), then all operations are O(log N)

Q8


