

After today's class you will be able to:
state and solve the MCSS problem on small arrays by observation
find the exact runtimes of the naive MCSS algorithms

Announcement, 2015

Software Engineering Professionals (SEP)
Information Session
Tuesday, September 8, 2015
6:00-8:00 p.m.
Moench Hall F225 - CSSE LAB

Andrew Hettlinger > Matt Boutell

November 6 at 12:30pm - 驾

In your class, I never thought I'd actually use big O notation, but now I find myself using it in my complaints to coworkers about how a previous developer would sort a list before doing a binary search to find a single element $O($ nlogn $)+O(\operatorname{logn})$ instead of just doing a linear search $O(n)$. I feel really nerdy now (as if I didn't before (P))

Like - Comment

So why would we ever do binary search?

Homework 1

- Is it true that $\log _{a}(n)$ is $\theta\left(\log _{b}(n)\right)$?
- Complete homework 1 to find out the exciting conclusion!
- Here is the graph for $a=2$ and $b=10$:
- Is it true that 3^{n} is $\theta\left(2^{n}\right)$?

Q1

Maximum Contiguous Subsequence Sum

A deceptively deep problem with a surprising solution.

$$
\{-3,4,2,1,-8,-6,4,5,-2\}
$$

Why do we look at this problem?

- It's interesting
- Analyzing the obvious solution is instructive
- We can make the program more efficient

A Nice Algorithm Analysis Example

- Problem: Given a sequence of numbers, find the maximum sum of a contiguous subsequence.
, Consider:
- What if all the numbers were positive?

- What if they all were negative?
- What if we left out "contiguous"?

Formal Definition: Maximum

Q2-4 Contiguous Subsequence Sum

Problem definition: Given a non-empty sequence of n (possibly negative) integers $A_{1}, A_{2}, \ldots, A_{n}$, find the maximum consecutive subsequence $S_{i, j}=\sum_{k=i}^{j} A_{k}$, and the corresponding values of i and j.

Quiz questions:

- In $\{-2,11,-4,13,-5,2\}, S_{2,4}=$?
\circ In $\{1,-3,4,-2,-1,6\}$, what is MCSS?
- If every element is negative, what's the MCSS?

> 1-based indexing. We'll use when analyzing b/c easier

Write a simple correct algorithm now

- Must be easy to explain
- Correctness is KING. Efficiency doesn't matter yet.
- 3 minutes
- Examples to consider:
- $\{-3,4,2,1,-8,-6,4,5,-2\}$
- $\{5,6,-3,2,8,4,-12,7,2\}$

First Algorithm

Find the sums of

 a/l subsequencespublic final class MaxSubTest \{ private static int seqStart $=0$; private static int seqEnd $=0$;
/* First maximum contiguous subsequence sum algorithm. * seqStart and seqEnd represent the actual best sequence. */
public static int maxSubSum1 (int [] a) \{
i: beginning of
subsequence int maxSum $=0$; subsequence for (int $i=0 ; i<a . l e n g t h ; i++$)
j: end of
subsequence
k: steps through each element of subsequence
of for (int ${ }^{\mathrm{j}}=\mathrm{i} ; \mathrm{j}<$ a.length; $\mathrm{j}++$) \{ $\xrightarrow[\text { int thissum }]{ }=0$;

$$
\text { for (int } k=i ; k<=j ; k++ \text {) }
$$

enissum += a[k];

Where

 will this algorithm spend the most time?```
 seqStart = i;
 seqEnd = j;
 }
 }
 return maxSum;
}
```

    if( thisSum \(>\) maxSum ) \{
        maxSum \(=\) thissum;
    How many times (exactly, as a function of $\mathrm{N}=$ a.length) will that statement execute?

## Analysis of this Algorithm

- What statement is executed the most often?
, How many times?
//In the analysis we use " n " as a shorthand for "a .length "
for ( int $i=0 ; i<a . l e n g t h ; i++$ )
for (int $j=i ; j<a . l e n g t h ; ~ j++) ~\{$
int thisSum $=0$;

$$
\begin{aligned}
& \text { for ( int } k=i ; k<=j ; k++ \text { ) } \\
& \text { thisSum }+=a[k] ;
\end{aligned}
$$

## Interlude

- Computer Science is no more about computers than astronomy is about $\qquad$ .


## Donald Knuth

## Interlude

- Computer Science is no more about computers than astronomy is about telescopes.

Donald Knuth

## Where do we stand?

- We showed MCSS is $O\left(n^{3}\right)$.
- Showing that a problem is $\mathrm{O}(\mathrm{g}(\mathrm{n})$ ) is relatively easy - just analyze a known algorithm.
- Is MCSS $\Omega\left(n^{3}\right)$ ?
- Showing that a problem is $\Omega(\mathrm{g}(\mathrm{n})$ ) is much tougher. How do you prove that it is impossible to solve a problem more quickly than you already can?
- Or maybe we can find

```
f(n) is O(g(n)) if f(n) \leqcg(n) for all n\geq n
 So O gives an upper bound
f(n) is \Omega(g(n)) if f(n)\geqcg(n) for all n \geq no
 So }\Omega\mathrm{ gives a lower bound
f(n) is 0(g(n)) if c
 So }0\mathrm{ gives a tight bound
 f(n) is 0(g(n)) if it is both O(g(n)) and \Omega(g(n))
```

What is the main source of the simple algorithm's inefficiency?
//In the analysis we use " $n$ " as a shorthand for "a.length " for ( int $i=0 ; i<a . l e n g t h ; i++$ )
for (int j $=1 ; j<a . l e n g t h ; j++$ ) \{ int thisSum $=0$;

$$
\begin{aligned}
& \text { for (int } k=i ; k<=j ; k++) \\
& \quad \text { thisSum +=a[k]; }
\end{aligned}
$$

- The performance is bad!


## Eliminate the most obvious inefficiency...

for (int $i=0 ; i<a . l e n g t h ; i++\}$ ( int thisSmm $=0$;
for ( int $\mathbf{j}=\mathbf{i} ; \mathbf{j}$ (a.length; j++ ) ( thisSum += a[j]:
if ( thissum $>$ maxSum ) \{ maxSum = thisSum;
seqStart $=1$; seqEnd $=\mathbf{j}$;
)
)

## MCSS is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

- Is MCSS $\Omega\left(\mathrm{n}^{2}\right)$ ?
- Showing that a problem is $\Omega(\mathrm{g}(\mathrm{n}))$ is much tougher. How do you prove that it is impossible to solve a problem more quickly than you already can?
- Can we find a yet faster algorithm?

$$
\begin{aligned}
& f(n) \text { is } O(g(n)) \text { if } f(n) \leq c g(n) \text { for all } n \geq n_{0} \\
& \text { So } O \text { gives an upper bound } \\
& f(n) \text { is } \Omega(g(n)) \text { if } f(n) \geq c g(n) \text { for all } n \geq n_{0} \\
& \text { So } \Omega \text { gives a lower bound } \\
& f(n) \text { is } \theta(g(n)) \text { if } c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for all } n \geq n_{0} \\
& \text { So } \theta \text { gives a tight bound } \\
& f(n) \text { is } \theta(g(n)) \text { if it is both } O(g(n)) \text { and } \Omega(g(n))
\end{aligned}
$$

## Can we do even better?

Tune in next time for the exciting conclusion!

Think about the 7,2 on the other side of the -12 : $\{5,6,-3,2,8,4,-12,7,2\}$

