
Maximum Contiguous Subsequence Sum

After today’s class you will be able to:
state and solve the MCSS problem on small arrays by observation

find the exact runtimes of the naive MCSS algorithms

https://openclipart.org/image/2400px/svg_to_png/169467/bow_tie.png



Software Engineering Professionals (SEP)

Information Session

Tuesday, September 8, 2015

6:00 -8:00 p.m.

Moench Hall F225 - CSSE LAB



So why would we ever do binary search?



 Is it true that loga(n) is q(logb(n))?

 Complete homework 1 to find out the 
exciting conclusion! 

 Here is the graph for a=2 and b=10:

 Is it true that 3n is q(2n)?



A deceptively deep problem 
with a surprising solution.

{-3, 4, 2, 1, -8, -6, 4, 5, -2}

Q1



 It’s interesting

 Analyzing the obvious solution is instructive

 We can make the program more efficient



 Problem: Given a sequence of numbers, find 
the maximum sum of a contiguous 
subsequence.

 Consider:
◦ What if all the numbers were positive?

◦ What if they all were negative?

◦ What if we left out “contiguous”?



 Quiz questions:
◦ In {-2, 11, -4, 13, -5, 2}, S2,4 = ?

◦ In {1, -3, 4, -2, -1, 6}, what is MCSS?

◦ If every element is negative, what’s the MCSS?

1-based indexing. We’ll use 
when analyzing b/c easier

Q2-4



◦ Must be easy to explain

◦ Correctness is KING. Efficiency doesn’t matter yet.

◦ 3 minutes

 Examples to consider:
◦ {-3, 4, 2, 1, -8, -6, 4, 5, -2}

◦ {5, 6, -3, 2, 8, 4, -12, 7, 2} 

Q5



Where 

will this 

algorithm 

spend the 

most 

time?

How many times 

(exactly, as a function of 
N = a.length) will that 
statement execute?

i: beginning of 
subsequence

j: end of 
subsequence

k: steps through 
each element of 
subsequence

Find the sums of 
all subsequences



 What statement is executed the most often?

 How many times?

Q6, Q7



 Computer Science is no more about 
computers than astronomy is about .

Donald Knuth



 Computer Science is no more about 
computers than astronomy is about 
telescopes.

Donald Knuth



 We showed MCSS is O(n3). 
◦ Showing that a problem is O(g(n)) is relatively easy – just 

analyze a known algorithm.

 Is MCSS W(n3)? 
◦ Showing that a problem is W (g(n)) is much tougher. How do 

you prove that it is impossible to solve a problem more 
quickly than you already can?

◦ Or maybe we can find 
a faster algorithm?



 The performance is bad!



This is Θ(?)



 Is MCSS W(n2)? 
◦ Showing that a problem is W (g(n)) is much tougher. How do 

you prove that it is impossible to solve a problem more 
quickly than you already can?

◦ Can we find a yet faster algorithm?



Tune in next time for the 
exciting conclusion!

Think about the 7,2 on the 
other side of the -12:

{5, 6, -3, 2, 8, 4, -12, 7, 2} 

Q8, Q9


