
Priority Queues
Heaps

Heapsort

After this lesson, you should be able to …
… apply the binary heap insertion and deletion algorithms by hand
… implement the binary heap insertion and deletion algorithms
… explain why you can build a heap in O(n) time
… implement heapsort

 Complete the Doublets partner(s) evaluation
by tonight.

 Choose a partner today for last program:
SortingRaces using signup sheet

Basic operations

Implementation options

 Each element in the PQ has an associated
priority, which is a value from a comparable
type (in our examples, an integer).

 Operations (may have other names):
◦ findMin()

◦ insert(item, priority) (also called add,offer)

◦ deleteMin() (also called remove or poll)

◦ isEmpty() …

 How could we implement it using data
structures that we already know about?
◦ Array?
◦ Queue?
◦ List?
◦ BinarySearchTree?

 One efficient approach uses a binary heap
◦ A somewhat-sorted complete binary tree

 Questions we'll ask:
◦ How can we efficiently represent a complete binary

tree?
◦ Can we add and remove items efficiently without

destroying the "heapness" of the structure?

1

An efficient implementation of
the PriorityQueue ADT

Storage (an array)

Algorithms for insertion and
deleteMin

Figure 21.1

A complete binary tree and its array representation

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Array: How to find the children

or the parent of a node?

Notice the

lack of

explicit

pointers in

the array

“complete”
is not a
completely
standard
term

One "wasted"
array position (0)

2

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

A Binary (min) Heap is a

complete Binary Tree (using

the array implementation, as

on the previous slide) that

has the heap-order property

everywhere.

In a binary heap, where do we find
•The smallest element?
•2nd smallest?
•3rd smallest?

3-4

 Idea of each:
1. Get the structure right first

 Insert at end (bottom of tree)

 Move the last element to the root after deleting the
root

2. Restore the heap-order property by percolating
(swapping an element/child pair)

 Insert by percolating up: swap with parent

 Delete by percolating down: swap with child with min value

Nice demo:
http://www.cs.usfca.edu/~galles/visualization/Heap.html

http://www.cs.usfca.edu/~galles/visualization/Heap.html

Figure 21.7
Attempt to insert 14, creating the hole and bubbling the hole up

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Create a "hole" where 14 can be inserted.

Percolate up!

Recall that the
actual data
movement is
done by array
manipulation

Figure 21.8
The remaining two steps required to insert 14 in the original heap

shown in Figure 21.7

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Analysis of

insertion …

5-6

Your turn: Insert into an initially empty heap:
6 4 8 1 5 3 2 7

Figure 21.10 Creation of the hole at the root

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

The min is at the root. Delete it, then use the percolateDown

algorithm to find the correct place for its replacement.

We must decide which child to promote, to make room for 31.

Figure 21.11
The next two steps in the deleteMin operation

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 21.12
The last two steps in the deleteMin operation

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Compare node to its children,

moving root down and

promoting the smaller child until

proper place is found.

We’ll re-use

percolateDown

in HeapSort

7-8

 Worst case times:
◦ findMin: O(1)
◦ insert: O(log n)
◦ deleteMin O(log n)

 big-oh times for insert/delete are the same
as in the balanced BST implementation, but ..
◦ Heap operations are much simpler to write.
◦ A heap doesn’t require additional space for pointers

or balance codes.

1,10

Read Heaps and heapsort instructions

You may leave early if you finish the
heap implementation. Otherwise aim

to finish before next class

Tomorrow: heapsort

Reminder: Doublets evals due today at
midnight.

Use a binary heap to sort an
array.

 Start with an empty structure.

 Insert each item from the unsorted array into
the data structure

 Copy the items from the data structure, one
at a time, back into the array, overwriting the
unsorted data.

 What data structures work in this scheme?

 What is the runtime?

11

 Start with empty heap

 Insert each array element into heap

 Repeatedly do deleteMin, copying elements back
into array.

 One alternative for space efficiency:
◦ We can save space by doing the whole sort in place,

using a "maxHeap" (i.e. a heap where the maximum
element is at the root instead of the minimum)

◦ http://www.cs.usfca.edu/~galles/visualization/HeapSort
.html

 Analysis?
◦ Next slide …

11

http://www.cs.usfca.edu/~galles/visualization/HeapSort.html

 Add the elements to the heap
◦ Repeatedly call insert O(n log n)

 Remove the elements and place into the array
◦ Repeatedly call deleteMin O(n log n)

 Total O(n log n)

 Can we do better for the insertion part?
◦ Yes, insert all the items in arbitrary order into the

heap’s internal array and then use BuildHeap (next)

BuildHeap takes a complete tree that is not a heap and

exchanges elements to get it into heap form

At each stage it takes a root plus two heaps and "percolates

down" the root to restore "heapness" to the entire subtree

Why this starting point?

Figure 21.17 Implementation of the linear-time buildHeap method

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 21.18
(a) After percolateDown(6);

(b) after percolateDown(5)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 21.19
(a) After percolateDown(4);

(b) after percolateDown(3)

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 21.20

(a)After percolateDown(2);

(b) after percolateDown(1) and buildHeap terminates

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

 Find a summation that represents the
maximum number of comparisons required
to rearrange an array of N=2H+1-1 elements
into a heap

 Can you find a summation and its value?

12

 Add the elements to the heap
◦ Insert n elements into heap (call buildHeap, faster)

 Remove the elements and place into the array
◦ Repeatedly call deleteMin

 Total runtime?
◦ q(n log n)

◦ We should expect no faster to sort! Why not?

Worktime now…

13-end

