

SSE 230

Recurrence Relations
 Sorting overview

$T(N)=\left\{\begin{array}{lll}\theta\left(N^{\log _{b} a}\right) & \text { if } a>b^{k} & \text { After today, you should be able to... } \\ \theta\left(N^{k} \log N\right) & \text { if } a=b^{k} & \ldots \text {.. solve recurrences for code snippets } \\ \theta\left(N^{k}\right) & \text { if } a<b^{k} & \text { the master method using telescoping and }\end{array}\right.$

More on Recurrence Relations

A technique for analyzing recursive algorithms

Recap: Recurrence Relation

- An equation (or inequality) that relates the $\mathrm{n}^{\text {th }}$ element of a sequence to certain of its predecessors (recursive case)
- Includes an initial condition (base case)
- Solution: A function of n.

Solve Simple Recurrence Relations

- One strategy: guess and check
- Examples:
- $\mathrm{T}(0)=0, \mathrm{~T}(\mathrm{~N})=2+\mathrm{T}(\mathrm{N}-1)$
- $\mathrm{T}(0)=1, \mathrm{~T}(\mathrm{~N})=2 \mathrm{~T}(\mathrm{~N}-1)$
- $\mathrm{T}(0)=\mathrm{T}(1)=1, \mathrm{~T}(\mathrm{~N})=\mathrm{T}(\mathrm{N}-2)+\mathrm{T}(\mathrm{N}-1)$
- $T(0)=1, T(N)=N T(N-1)$
- $T(0)=0, T(N)=T(N-1)+N$
- $T(1)=1, T(N)=2 T(N / 2)+N$
(just consider the cases where $\mathrm{N}=2^{\mathrm{k}}$)

Other solution strategies for recurrence relations

- Guess and check
- Telescoping
- The master theorem

Selection Sort

```
public static void selectionSort(int[] a) {
    //Sorts a non-empty array of integers.
    for (int last = a.length-1; last > 0; last--) {
    // find largest, and exchange with last
    int largest = a[0];
    int largePosition = 0;
    for (int j=1; j<=last; j++)
        if (largest < a[j]) {
            largest = a[j];
            largePosition = j;
    }
    a[largePosition] = a[last];
    a[last] = largest;
    }
}
```


Selection Sort: recursive version

void sort (a) \{ sort (a, a.length-1); \} ~
void sort (a, last) \{
if (last == 0) return;
find max value in a from 0 to last swap max to last sort (a, last-1)
$\}$

Another Strategy: Telescoping

- Basic idea: tweak the relation somehow so successive terms cancel
, Example: $\mathrm{T}(1)=1, \mathrm{~T}(\mathrm{~N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{N}$ where $\mathrm{N}=2^{\mathrm{k}}$ for some k
- Divide by N to get a "piece of the telescope":

$$
\begin{aligned}
T(N) & =2 T\left(\frac{N}{2}\right)+N \\
\Longrightarrow \frac{T(N)}{N} & =\frac{2 T\left(\frac{N}{2}\right)}{N}+1 \\
\Longrightarrow \frac{T(N)}{N} & =\frac{T\left(\frac{N}{2}\right)}{\frac{N}{2}}+1
\end{aligned}
$$

A Fourth Strategy: Master Theorem

- For Divide-and-conquer algorithms
- Divide data into two or more parts of the same size
- Solve problem on one or more of those parts
- Combine "parts" solutions to solve whole problem
- Examples
- Binary search
- Merge Sort
- MCSS recursive algorithm we studied last time

Divide and Conquer Recurrences all have the same form

$$
\begin{array}{r}
T(N)=a T(N / b)+\theta\left(N^{k}\right) \\
\text { with } a \geq 1, b>1
\end{array}
$$

- Recursive part
- $\mathrm{a}=$ number of parts we solve
- $b=$ number of parts we divide into
- Non-recursive part
$\circ f\left(N^{k}\right)=$ overhead of dividing and combining (or, the amount of work done each recursion)

The Master Theorem is convenient, but only works for divide and conquer recurrences

- For any recurrence in the form:

$$
\begin{array}{r}
T(N)=a T(N / b)+\theta\left(N^{k}\right) \\
\text { with } a \geq 1, b>1
\end{array}
$$

- The solution is

$$
T(N)= \begin{cases}\theta\left(N^{\log _{b} a}\right) & \text { if } a>b^{k} \\ \theta\left(N^{k} \log N\right) & \text { if } a=b^{k} \\ \theta\left(N^{k}\right) & \text { if } a<b^{k}\end{cases}
$$

Example: $2 \mathrm{~T}(\mathrm{~N} / 4)+\mathrm{N}$

Summary: Recurrence Relations

- Analyze code to determine relation
- Base case in code gives base case for relation
- Number and "size" of recursive calls determine recursive part of recursive case
- Non-recursive code determines rest of recursive case
- Apply one of four strategies
- Guess and check
- Substitution (a.k.a. iteration)
- Telescoping
- Master theorem

Sorting overview

Quick look at several sorting methods
Focus on quicksort Quicksort average case analysis

Elementary Sorting Methods

- Name as many as you can
- How does each work?
- Running time for each (sorting N items)?
- best
- worst
- average
- extra space requirements
- Spend 10 minutes with a group of three, answering these questions. Then we will summarize

