CSSE 230

Extended Binary Trees Recurrence relations

After today, you should be able to...
...explain what an extended binary tree is
...solve simple recurrences using guess-and-check

Reminders/Announcements

Today:

- Extended Binary Trees (basis for much of WA8, which includes induction proofs and no programming)
- Recurrence relations, part 1
- EditorTrees worktime?

Extended Binary Trees (EBT's)

Bringing new life to Null nodes!

An Extended Binary Tree (EBT) just has

 nul/ external nodes as leaves- Not a single NULL_NODE, but many NULL_NODEs
- An Extended Binary tree is either

- an external (null) node, or
- an (internal) root node and two EBTs T_{L} and T_{R}.
- We draw internal nodes as circles and external nodes as squares.
- Generic picture and detailed picture.
- This is simply an alternative way of viewing binary trees, in which we view the external nodes as "places" where a search can end or an element can be inserted.

A property of EBTs

- Property $\mathrm{P}(\mathrm{N})$: For any $\mathrm{N}>=0$, any EBT with N internal nodes has ______ external nodes.
- Prove by strong induction, based on the recursive definition.
- A notation for this problem: $\operatorname{IN}(T), \operatorname{EN}(T)$

Hint (reminder): Find a way to relate the properties for larger trees to the property for smaller trees.

Introduction to Recurrence Relations
 A technique for analyzing recursive algorithms

Recap: Maximum Contiguous Subsequence Sum problem

Problem definition: Given a non-empty sequence of n (possibly negative) integers $A_{1}, A_{2}, \ldots, A_{n}$, find the maximum consecutive subsequence $S_{i, j}=\sum_{k=i}^{j} A_{k}$, and the corresponding values of i and j.

Divide and Conquer Approach

- Split the sequence in half
- Where can the maximum subsequence appear?
- Three possibilities :
- entirely in the first half,
- entirely in the second half, or
- begins in the first half and ends in the second half

This leads to a recursive algorithm

1. Using recursion, find the maximum sum of first half of sequence
2. Using recursion, find the maximum sum of second half of sequence
3. Compute the max of all sums that begin in the first half and end in the second half

- (Use a couple of loops for this)

4. Choose the largest of these three numbers
```
private static int maxsumRec( int [ ] a, int left, int right )
{
    int maxLeftBordersum = 0, maxRightBordersum = 0;
    int leftBordersum = 0, rightBordersum = 0;
int center = ( left + right ) / 2;
if( left == right) // Base case
    N = array size
    return a[ left ] > 0 ? a[ left ] : 0;
int maxLeftsum = maxsumRec( a, left, center );
int maxRightsum = maxSumRec( a, center + 1, right );
for(int i = center; i >= left; i-- )
{
    leftBordersum += a[ i ];
    if( leftBordersum > maxLeftBordersum )
        maxLeftBordersum = leftBorderSum;
}
for( int i = center + 1; i <= right; i++ )
{
    rightBordersum += a[ i ];
    if( rightBordersum > maxRightBordersum )
        maxRightBordersum = rightBordersum;
}
return max3( maxLeftSum, maxRightSum,
        maxLeftBordersum + maxRightBordersum );
```

private static int maxsumRec (int [] a, int left, int right)

```
int maxLeftBordersum = 0, maxRightBordersum = 0;
int leftBordersum = 0, rightBordersum = 0;
int center = ( left + right ) / 2;
if( left == right) // Base case
    return a[ left ] > 0 ? a[ left ] : 0;
int maxLeftsum = maxSumRec( a, left, center );
int maxRightsum = maxSumRec( a, center + 1, right );
for( int i = center; i >= left; i-- )
{
    leftBordersum += a[ i ];
    if( leftBordersum > maxLeftBordersum )
            maxLeftBordersum = leftBordersum;
```

```
}
for( int i = center + 1; i <= right; i++ )
{
    rightBordersum += a[ i ];
    if( rightBordersum > maxRightBordersum )
        maxRightBordersum = rightBorderSum;
}
return max3( maxLeftSum, maxRightSum,
                        maxLeftBordersum + maxRightBorderSum );
```


Analysis?

- Write a Recurrence Relation
- $\mathrm{T}(\mathrm{N})$ gives the run-time as a function of N
- Two (or more) part definition:
- Base case, like $T(1)=c$
- Recursive case, like $T(N)=T(N / 2)+1$

So, what's the recurrence relation for the recursive MCSS algorithm?

private static int maxsumRec (int [] a, int left, int right)

```
int maxLeftBordersum = 0, maxRightBordersum = 0;
int leftBordersum = 0, rightBordersum = 0;
int center = ( left + right ) / 2;
if( left == right) // Base case
    return a[ left ] > 0 ? a[ left ] : 0;
int maxLeftsum = maxSumRec( a, left, center );
int maxRightsum = maxSumRec( a, center + 1, right );
for( int i = center; i >= left; i-- )
{
    leftBordersum += a[ i ];
    if( leftBordersum > maxLeftBordersum )
            maxLeftBordersum = leftBorderSum;
```

```
}
for( int i = center + 1; i <= right; i++ )
{
    rightBordersum += a[ i ];
    if( rightBordersum > maxRightBordersum )
        maxRightBordersum = rightBorderSum;
}
return max3( maxLeftSum, maxRightSum,
                        maxLeftBordersum + maxRightBorderSum );
```

private static int maxsumRec (int [] a, int left, int right)

```
int maxLeftBordersum = 0, maxRightBordersum = 0;
int leftBordersum = 0, rightBordersum = 0;
int center = ( left + right ) / 2;
if( left == right) // Base case
    return a[ left ] > 0 ? a[ left ] : 0;
int maxLeftsum = maxSumRec( a, left, center );
int maxRightsum = maxsumRec( a, center + 1, right );
```

for (int $i=$ center; $i>=$ left; $i--$)
\{
leftBordersum $+=$ a[i];
if(leftBordersum > maxLeftBordersum)
maxLeftBordersum $=$ leftBordersum;

Runtime = non-recursive part
\}
for (int $i=$ center +1 ; $i \ll$ right; $i++$)
(
rightBordersum $+=$ a[i];
if(rightBordersum > maxRightBordersum)
maxRightBordersum $=$ rightBordersum;

```
T(N)=
2T(N/2)+0(N)
```

\}
return max3 (maxLeftsum, maxRightsum,

Solve Simple Recurrence Relations

- One strategy: guess and check
- Examples:

As class:

$$
\begin{aligned}
\therefore \mathrm{T}(0) & =0, \mathrm{~T}(\mathrm{~N})=2+\mathrm{T}(\mathrm{~N}-1) \\
\therefore \mathrm{T}(0) & =1, \mathrm{~T}(\mathrm{~N})=2 \mathrm{~T}(\mathrm{~N}-1) \\
\therefore \mathrm{T}(0) & =\mathrm{T}(1)=1, \mathrm{~T}(\mathrm{~N})=\mathrm{T}(\mathrm{~N}-2)+\mathrm{T}(\mathrm{~N}-1)
\end{aligned}
$$

On quiz:

- $\mathrm{T}(0)=1, \mathrm{~T}(\mathrm{~N})=\mathrm{NT}(\mathrm{N}-1)$
- $\mathrm{T}(0)=0, \mathrm{~T}(\mathrm{~N})=\mathrm{T}(\mathrm{N}-1)+\mathrm{N}$
- $\mathrm{T}(1)=1, \mathrm{~T}(\mathrm{~N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{N}$
(just consider the cases where $N=2^{k}$)

Next time: More solution strategies for recurrence relations

- Guess and check
- Telescoping
- The master theorem

Editor Trees Work Time

Please address any issues found in Milestone 2 feedback

