CSSE 230

Hash table basics

After today, you should be able to...
...explain how hash tables perform insertion in
amortized O(1) time given enough space

82
“ate"e > 485949839“ >83 o5
84

Announcements and questions

1. Test 2a feedback. Solutions posted.

>. EditorTrees project.
1. Use toString() and toDebugString()
2. Expect to spend lots of time

3. HWG6 discussion

Big picture: a map gives dictionary storage

» Map: insertion, retrieval, and deletion of items by key.

» Examples:
> Map<String, Integer> wordCounts;
> count = wordCounts.get(“best”’);

- Map<lInteger, Student> students;
- students.add(56423302, new Student(...))l

» Implementation choices:

- TreeMap (and TreeSet) uses a balanced tree: O(log n) time
- Uses a red-black tree

- HashMap (and HashSet) uses a hash table: amortized O(1) time

The interesting part is the keys, which form a set since they
are unique. So we’ll just consider sets today.

Big ideas of hash tables

1. The underlying storage is an array

2. Calculate the index to store an item from
the item itself. How?

3. What if that location is already occupied
with another item?

Direct Address Tables

direct access table

collection IT
0! 1
L Ny T
I N
) 1! i

III:I 0.
k k
» Issues?

» Array of size m
» n elements with unique keys

» If n < m, then use the key as an array
index.
> Clearly O(1) lookup of keys

- Keys must be unique.

- Often the range of potential keys is much larger
than the storage we want for an array

- Example: RHIT student IDs vs. # Rose students

Diagram from John Morris, University of Western Australia

We attempt to create unique keys
by applying a .hashCode() function ...

key > HiEE (865100 > integer

Objects that are .equals()

MUST have the same hashCode values
A good hashCode() also

is fast to calculate and

distributes the keys, like:

hashCode(“ate”)= 48594983

hashCode(“ape”)= -76849201 (can be negative if overflows)
hashCode(“awe”) = 14893202

...and then take it mod the table size (m) to get an
index into the array.

» Example: if m = 100:

nashCode(“ate”)= 48594983 ->83
nashCode(“ape”)= -76849201 2>46*
nashCode(“awe”) = 1489036 236

*Note: since the hashCode is an integer, it might be negative,
and negative numbers have negative remainders.

Trick: If it is negative, add Integer.MAX_VALUE to make it
positive before you mod.

Index calculated from the object itself, not from 3-4
a comparison with other objects

» How Java’s hashCode() is used:

82
“ate"e > 48594983%“ >83 e
84

> Unless this position is already occupied

i

Some hashCode() implementations

» Default if you inherit Object’s: memory location

» Many JDK classes override hashCode()
> Integer: the value itself
> Double: XOR first 32 bits with last 32 bits
> String: we’ll see shortly!
- Date, URL, ...

» Custom classes should override hashCode()
- Use a combination of final fields.

- If key is based on mutable field, then the hashcode will
change and you will lose it!

A simple hash function for Strings is a function
of every character

public static int hash(String s) {
int total = 0;
for (int i=0; i<s.length(); i++)
total = total + s.charAt (i) ;
return total;

}

» Advantages?

» Disadvantages?

A better hash function for Strings uses place
value

public static int hash(String s) {
int total = 0;
for (int i=0; i<s.length(); i++)
total = total*256 + s.charAt(i);
return total;

}

» Spreads out the values more, and anagrams not an issue.
» What about overflow during computation?

- What happens to first characters?

A better hash function for Strings uses place
value with a base that’s prime

public static int hash(String s) {
int total = 0;
for (int i=0; i<s.length(); i++)
total = total*31 + s.charAt (i) ;
return total;

}

» Spread out, anagrams OK, overflow OK.

» This is String’s hashCode () method.
» The (x = 31x + y) pattern is a good one to follow.

Collisions are inevitable 7

“ate"e > 485949839“ >83 S5

84

» A good hashcode distributes keys evenly, but
collisions will still happen

» hashCode() are ints 2 only ~4 billion unique values.
- How many 16 character ASCII strings are possible?

» If n is small, tables should be much smaller
- mod will cause collisions too!

» Solutions:
> Chaining
> Probing (Linear, Quadratic)

Separate chaining: an array of linked lists

Examples: .get(“at”), .get(“him),

6 7 8 9 10 11 12 13 14 15 o 17 18 19 20

g Sim 3, B AE S
A ® [
THZ LYt [oril ¢ ol Pl B YT I

A OR TO | [HAVE| | BE FOR BUT | | HAD AN NOT [| AND FROM THIS | |THEY 1S ON

® ® ® ® ® ® ® ®

Y Y Y ' Y \ Y Y

THE HIS WAS HE THAT AT BY WITH

® ®

\ Y

OF IT

Java’s HashMap uses chaining and a table

size that is a power of 2.

Runtime of hashing with chaining depends on

the load factor

14 15 16 17 18

AT VT

5
-
St
S

pnnEOnnEOnng

m array slots,
n items.
Load factor, A=n/m.

Runtime = O(L)

Space-time trade-off
1. If m constant, then this is O(n). Why?

EEEBEEEOLE
i i
A vl

[T ST
N

v v

2. If keep m~0.5n (by doubling), then this is amortized O(1). Why?

O-

10

Alternative: Store collisions in other array
slots.

» No need to grow in second direction

» No memory required for pointers
- Historically, this was important!
- Still is for some data...

» Will still need to keep load factor (.=n/m) low
or else collisions degrade performance
- We’ll grow the array again

Collision Resolution: Linear Probing

» Probe H (see if it causes a collision)

» Collision? Also probe the next available space:
> Try H, H+1, H+2, H+3, ...
- Wraparound at the end of the array

» Example on board: .add() and .get()
» Problem: Clustering

» Animation:

11

http://www.cs.auckland.ac.nz/software/AlgAnim/hash_tables.html

hash (89, 10) = 9
hash (18, 10) = 8
hash (49, 10) = 9
hash (58, 10) = 8
hash (9, 10) = 9
After insert 89 After insert 18 After insert 49 Afterinsert 58 After insert 9
Figure 20.4 0 29 19 ”
Linear probing hash
table after each 1 58 58
insertion 2 9
3
Good example 4
of clustering 5
and wraparound
6
7
8 18 18 18 18
9 89 89 89 89 89

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss ~ © 2002 Addison Wesley

Linear probing efficiency also depends on load
factor, A, = n/m

» For probing to work, 0 <A < 1.

» For a given A, what is the expected number
of probes before an empty location is found?

12

Rough Analysis of Linear Probing

» Assume all locations are equally likely to be
occupied, and equally likely to be the next
one we |look at.

» Then the probability that a given cell is full is
A and probability that a given cell is empty is
1-\.

» What's the expected number?

oo 1
NP1 - Np= ——

P AT A=Np =15

p=1

Better Analysis of Linear Probing

» Clustering!

- Blocks of occupied cells are formed

- Any collision in a block makes the block bigger
» Two sources of collisions:

> |dentical hash values
- Hash values that hit a cluster

» Actual average number of probes for large A:

%(1 ’ (1—1»2)

For a proof, see Knuth, The Art of Computer Programming, Vol 3:

Searching Sorting, 2nd ed, Addision-Wesley, Reading, MA, 1998.

13

Why consider linear probing?

» Easy to implement

» Works well when load factor is low
> In practice, once A > 0.5, we usually double the size
of the array and rehash

- This is more efficient than letting the load factor
get high

To reduce clustering, probe farther apart

» Reminder: Linear probing:
> Collision at H? Try H, H+1, H+2, H+3,...

» New: Quadratic probing:
- Collision at H? Try H, H+12. H+22, H+32, ...

> Eliminates primary clustering. “Secondary
clustering” isn’t as problematic

Quadratic Probing works best with low A and 14
prime m

» Choose a prime number for the array size, m
» Then if A < 0.5;

- Guaranteed insertion
- If there is a “hole”, we’ll find it
- So no cell is probed twice

» Can show with m=17, H=6.

For a proof, see Theorem 20.4:
Suppose that we repeat a probe before trying more than half
the slots in the table

See that this leads to a contradiction
Contradicts fact that the table size is prime

Quadratic probing analysis

» No one has been able to analyze it!

» Experimental data shows that it works well
> Provided that the array size is prime, and A < 0.5

Summary: 15-17
Hash tables are fast for some operations

Structure —linsert | Find value | Find max value _

Unsorted array
Sorted array
Balanced BST
Hash table

» Finish the quiz.
» Then check your answers with the next slide

Answers:

S Jiser - nd ke i maxaie

Unsorted array Amortized 0(1) 0(n)
Sorted array 0(n) (Iog n) 0(1)
Balanced BST 0(log n) 0(log n) 0(log n)

Hash table Amortized 6(1) 0(1) o(n)

In practice

» Constants matter!

» 727MB data, ~190M elements

- Many inserts, followed by many finds
- Microsoft's C++ STL

bwld (seconds) OOkfmds (seconds)

Hash map 6,150

Tree map 114 3,500 127

Sorted array 17 727 25
» Why?

» Sorted arrays are nice if they don’t have to be
updated frequently!

