CSSE 230 Day 13
 AVL trees and rotations

This week, you should be able to...
...perform rotations on height-balanced trees, on paper and in code
... write a rotate() method
... search for the kth item in-order using rank

Test 1 summary:

- Goals
- Runtime of code with loops, including divide and conquer (cut in half = logs)
- Big-Oh and cousins
- Using common ADTs
- Difference between sets and maps, hash and tree implementations
- Decisions about which ADT is best to use for a given problem
- For correctness and efficiency
- Arrays are nice, but capacity must be doubled
- add is amortized O(1)
- Overall a good start!

Test 2a Thursday:

 Recursive tree methods all follow this format- Consider an arbitrary method named foo()
foo()
If base case, return the appropriate value
- 1. Compute a value for the node
- 2. Call left.foo()
- 3. Call right.foo()
- Combine the results and return them
- This is $\mathrm{O}(\mathrm{n})$ if the computation on the node is constant-time
- When searching in a BST, you only need to recurse left or right, so it is O (height)

If you submitted HW4, you will receive a solution in your repo. HW5 is very relevant - I encourage you to start before the test! Let's discuss now

Announcements

- See schedule page

Summary: for fast tree operations, we must keep tree somewhat balanced in $O(\log n)$ time

- Total time to do insert/delete =
- Time to find the correct place to insert $=\mathrm{O}$ (height)
- + time to detect an imbalance
- + time to correct the imbalance
- If don't bother with balance:
- If try to keep perfect balance:
- Height is O(logn) BUT ...
- But maintaining perfect balance is $\mathrm{O}(\mathrm{n})$

- Height-balanced trees are still O(log n)
- For T with height $h, N(T) \leq \operatorname{Fib}(h+3)-1$
- So $\mathrm{H}<1.44 \log (\mathrm{~N}+2)-1.328$ *
- AVL (Adelson-Velskii and Landis) trees maintain height-balance using rotations

- Are rotations $\mathrm{O}(\log \mathrm{n})$? We'll see...

AVL nodes are just like BinaryNodes, but also have an extra "balance code"

or

Different representations for $/=\backslash$:

- Just two bits in a low-level language
- Enum in a higher-level language
- Assume tree is height-balanced before insertion
Insert as usual for a BST
- Move up from the newly inserted node to the lowest "unbalanced" node (if any)
- Use the balance code to detect unbalance how?
- Why is this $\mathrm{O}(\log n)$?
- We move up the tree to the root in worst case, NOT recursing into subtrees to calculate heights
- Do an appropriate rotation (see next slides) to balance the sub-tree rooted at this unbalanced node

Four types of rotations are required to remove different cases of tree imbalances

- For example, a single left rotation:

We rotate by pulling the "too tall" sub-tree up and pushing the "too short" sub-tree down

- Two basic cases
- "See saw" case:
- Too-tall sub-tree is on the outside
- So tip the see saw so it's level
- "Suck in your gut" case:
- Too-tall sub-tree is in the middle
- Pull its root up a level

Single Left Rotation

Diagrams are from Data Structures by E.M. Reingold and W.J. Hansen

Double Left Rotation

Weiss calls this "right-left double rotation"

Your turn - work with a partner

- Write the method:
, static BalancedBinaryNode singleRotateLeft BalancedBinaryNode parent, /* A */ BalancedBinaryNode child /* B */) \{
\}
- Returns a reference to the new root of this subtree.
- Don't forget to set the balanceCode fields of the nodes.

More practice-(sometime after class)

- Write the method:
, BalancedBinaryNode doubleRotateRight (BalancedBinaryNode parent, /* A */ BalancedBinaryNode child, /* C */ BalancedBinaryNode grandChild /* B */) \{
\}
- Returns a reference to the new root of this subtree.
- Rotation is mirror image of double rotation from an earlier slide
- If you have to rotate after insertion, you can stop moving up the tree:
- Both kinds of rotation leave height the same as before the insertion!
- Is insertion plus rotation cost really $\mathrm{O}(\log \mathrm{N})$?

Insertion/deletion in AVL Tree:
Find the imbalance point (if any):
$O(\log n)$
Single or double rotation:
$O(\log n)$
O (1)
(looking ahead) for deletion, may have to do $O(\log N)$ rotations
Total work:
O(log n)

Term Project: EditorTrees

Like BST, except:

1. Keep height-balanced
2. Insertion/deletion by index, not by comparing elements.

So not sorted

Examples:

, EditorTree et = new EditorTree()
, et.add('a') / / append to end
b et.add(‘b’) // same
, et.add('c') / / same. Rebalance!

- et.add('d’, 2) // where does it go?
, et.add('e')
- et.add('f', 3)
- Notice the tree is height-balanced (so height $=\mathrm{O}(\log n))$, but not a BST

To find index quickly, add a rank field to BinaryNode

- Gives the in-order position of this node within its own subtree
- i.e., the size of its left subtree

0 -based
indexing

- How would we do findK ${ }_{\text {th }}$?
- Insert and de1ete start similarly

Get with your EditorTrees team

Read the specification and check out the starting code

Milestone 1 due soon.
Get started before next class!

