

CSSE 230 Day 10

Size vs height in a Binary Tree

After today, you should be able to...
... use the relationship between the size and height of a tree to find the maximum and minimum number of nodes a binary tree can have
...understand the idea of mathematical induction as a proof technique

Today

- New material:
- Size vs height of trees: patterns and proofs
- Review for test next class
- Written (50-70\%):
- big $0 / \theta / \Omega$: true/false, using definitions, code analysis
- Choosing an ADT to solve a given problem
- Maybe a bit with binary trees
- Programming (30-50\%):
- Implementing one ADT using another ADT
- Due after that:
- Hardy's Taxi, part two: efficiency boost!
- Meet partner now

Size and Height of Binary Trees

- Notation:
- Let T be a tree
- Write $h(T)$ for the height of the tree, and
- $N(T)$ for the size (i.e., number of nodes) of the tree
- Given $\mathrm{h}(\mathrm{T})$, what are the bounds on $\mathrm{N}(\mathrm{T})$? - $N(T)<=$ _______ and $N(T)>=$ ______
- Given $N(T)$, what are the bounds on $h(T)$? - Solve each inequality for $h(T)$ and combine

Extreme Trees

- A tree with the maximum number of nodes for its height is a full tree.
- Its height is $\mathrm{O}(\log \mathrm{N})$
- A tree with the minimum number of nodes for its height is essentially a \qquad
- Its height is $\mathrm{O}(\mathrm{N})$
, Height matters!
- Recall that the algorithms for search, insertion, and deletion in a binary search tree are $\mathrm{O}(\mathrm{h}(\mathrm{T})$)

To prove recursive properties (on trees), we use a technique called mathematical induction

- Actually, we use a variant called strong induction:

The former governor of California

Strong Induction

- To prove that $\mathrm{p}(\mathrm{n})$ is true for all $\mathrm{n}>=\mathrm{n}_{0}$:
- Prove that $p\left(n_{0}\right)$ is true (base case), and
- For all $k>\mathrm{n}_{0}$, prove that if we assume $p(j)$ is true for $n_{0} \leq j<k$, then $p(k)$ is also true
- An analogy for those who took MA275:
- Regular induction uses the previous domino to knock down the next
- Strong induction uses all the previous dominos to knock down the next!
- Warmup: prove the arithmetic series formula
- Actual: prove the formula for $N(T)$

Exam Review

The Big Picture

- All data structures really boil down to:
- Continuous memory (arrays), or
- Nodes and pointers (linked lists, trees, graphs)
- Let's draw pics of each
- Then you do the questions on the back with a partner as exam review
- Then time for questions

