
More BinaryTree methods 

Tree Traversals and Iterators

Q1

After today, you should be able to…
… traverse trees on paper & in code
… implement a simple iterator for trees



 Reminder: 

Register for Hack 
Night by the end 
of the day!



4 possibilities for children (leaf, 
Left only, Right only, Both)

1 possibility for children: Both 
(which could be NULL_NODE) 

NULL



Simpler

Simpler



Comment out unused tests and 
uncomment as you go

Write containsNonBST(T item) now.



 If (node is null)
◦ Return something 

simple

 Recurse to the left

 Recurse to the right

 Combine results 
with this node



 If (node is null)
◦ Return something 

simple

 Recurse to the left

 Recurse to the right

 Combine results 
with this node



 If (node is null)
◦ Return something 

simple

 Recurse to the left

 Recurse to the right

 Combine results 
with this node



 If (node is null)
◦ Return something 

simple

 Recurse to the left

 Recurse to the right

 Combine results 
with this node

 Print the tree 
contents

 Sum the values of 
the nodes

 Dump the contents 
to an array list

 Lots more



 PreOrder (top-down, depth-first)
◦ root, left, right

 PostOrder (bottom-up)
◦ left, right, root

 InOrder (left-to-right, if tree is spread out)
◦ Left, root, right

 LevelOrder (breadth-first)
◦ Level-by-level, left-to-right within each level

2-6



If the tree 
has N 
nodes, 
what’s the 
(worst-
case) 
big-Oh 
run-time 
of each 
traversal?



 Brainstorm how to write:

public ArrayList<T> toArrayList() 

 Then BST toString() will simply be:

return toArrayList().toString();

6



Otherwise, you’ll need a loop. Examples:

 Lazy iterators (next class): 
◦ use a stack too.

 AVL trees (week 4): 
◦ use pointer to parents to move up tree and 

“rebalance”

 Threaded trees (HW5 and 6): 
◦ use pointer to next in-order nodes



 In Java, specified by java.util.Iterator<E>



What if we want to iterate over 
the elements in the nodes of the 
tree one-at-a-time instead of 
just printing all of them?

Q7-9


