
Checkout BinarySearchTree from SVN

Intro to Trees

After today, you should be able to…
…use tree terminology
…write recursive tree functions

 Part of Homework 3
◦ Examine the Code of Ethics of the ACM

 Focus on property rights

◦ Write a reaction (1 page single-spaced)

◦ Details are in the assignment

 Context for writing efficient code
◦ Correct and maintainable, does it need to be fast?

◦ Other constraints like space

◦ Completing your work ethically

◦ Be a team player (next)

 No prima donnas
◦ Working way ahead, finishing on your own, or

changing the team’s work without discussion:

 harms the education of your teammates

 No laggards
◦ Coasting by on your team’s work:

 harms your education

 Both extremes
 are selfish

 may result in a failing grade for you on the project

 I’ll assign an overall grade to the project

 Grades of individuals will be adjusted up or
down based on team members’ assessments

 At the end of the project each of you will:
◦ Rate each member of the team, including yourself

◦ Write a short Performance Evaluation of each team
member with evidence that backs up the rating

 Positives

 Key negatives

Excellent—Consistently went above and beyond: tutored teammates,
carried more than his/her fair share of the load

Very good—Consistently did what he/she was supposed to do, very
well prepared and cooperative

Satisfactory—Usually did what he/she was supposed to do, acceptably
prepared and cooperative

Ordinary—Often did what he/she was supposed to do, minimally
prepared and cooperative

Marginal—Sometimes failed to show up or complete tasks, rarely
prepared

Deficient—Often failed to show up or complete tasks, rarely prepared

Unsatisfactory—Consistently failed to show up or complete tasks,
unprepared

Superficial—Practically no participation

No show—No participation at all

http://comics.com/frank&ernest/2010-12-13/
http://comics.com/frank&ernest/2010-12-13/

 an implementation that offers interesting
benefits, but is more complex to code than
arrays…

 … Trees!

Introduction and terminology
for three types

Binary
Search
Trees

Binary Trees

Trees

 Class hierarchy tree (single inheritance only)

 Directory tree in a file system

 A collection of nodes

 Nodes are connected by directed edges.
◦ One special root node has no incoming edges
◦ All other nodes have exactly one incoming edge

 One way that Computer Scientists
are odd is that our trees
usually have their root at
the top!

 How are trees like a linked list?

 How are they different?

 Parent

 Child

 Grandparent

 Sibling

 Ancestors and descendants

 Proper ancestors, proper descendants

 Subtree

 Leaf, interior node

 Depth and height of a node

 Height of a tree

Which is larger, the sum of
the heights or the sum of the
depths of all nodes in a tree?

The height of
a tree is the
height of its
root node.

 A Binary Tree is either
◦ empty, or

◦ consists of:

 a distinguished node called the root, which contains
an element, and

 A left subtree TL, which is a binary tree

 A right subtree TR, which is a binary tree

 Binary trees contain
at most 2 children

root

TL

TR

 Q: What property enables us to search BSTs
efficiently?

 A: Every element in the left subtree is smaller
than the root, and every element in the right
subtree is larger than the root. And this is
true at every node, not just the root.

 Write size() for linked list
◦ Non-recursively

◦ Recursively

 Write size() for a tree
◦ Recursively

◦ Non-recursively (later)

 Let’s start the BinarySearchTrees assignment:
implement a BinaryTree<T> class

1

2

3

4

5

6

Test tree:

A single tiny
recursive method for
size will touch every
node in the tree.
Let’s write, then
watch in debugger.

