

Maximum Contiguous Subsequence Sum

After today's class you will be able to:

state and solve the MCSS problem on small arrays by observation find the exact runtimes of the naive MCSS algorithms

https://openclipart.org/image/2400px/svg_to_png/169467/bow_tie.png

Andrew Hettlinger ► Matt Boutell November 6 at 12:30pm · 44

In your class, I never thought I'd actually use big O notation, but now I find myself using it in my complaints to coworkers about how a previous developer would sort a list before doing a binary search to find a single element O(nlogn) + O(logn) instead of just doing a linear search O(n). I feel really nerdy now (as if I didn't before 🙂)

Like · Comment

So why would we ever sort first to do binary search?

Limits and Asymptotics

Consider the limit

$$\lim_{n \to \infty} \frac{f(n)}{g(n)}$$

- What does it say about asymptotic relationship between f and g if this limit is...
 - 0?
 - finite and non-zero?
 - infinite?

Apply this limit property to the following pairs of functions

1. n and n²

2. log n and n (on these questions and solutions ONLY, let log n mean natural log)

- 3. n log n and n^2
- 4. $\log_a n$ and $\log_b n$ (a < b)
- 5. n^{a} and a^{n} (a > 1)

6. a^n and b^n (a < b)

Recall l'Hôpital's rule: under appropriate conditions,

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

Q13–15

Answers

- 1. n is $O(n^2)$; n^2 is $\Omega(n)$
- 2. log n is O(n); n is $\Omega(\log n)$
- 3. n log n is O(n²); n² is Ω (n log n). (Use l'Hopital's rule)
- log_an is Θ(log_bn) (so log_bn is Θ(log_an)) Hint: Rewrite log_an as log n/log a and log_bn as log n/log b. Simplifying, we see that the original limit is a constant: no differentiating is needed here either.
- 5. n^{a} is O(a^{n}) and is o(a^{n}); a^{n} is $\Omega(n^{a})$ and $\omega(n^{a})$ Hint: use l'Hopital's rule repeatedly until numerator goes to 0.
- 6. a^n is O(bⁿ) and is o(bⁿ); bⁿ is $\Omega(a^n)$ and $\omega(a^n)$ Hint: rewrite as $(a/b)^n$. Because a < b, a/b < 1, and when x < 1, x^n approaches 0 as n goes to infinity.

Maximum Contiguous Subsequence Sum

A deceptively deep problem with a surprising solution.

Why do we look at this problem?

It's interesting

- Analyzing the obvious solution is instructive
- We can make the program more efficient

A Nice Algorithm Analysis Example

Problem: Given a sequence of numbers, find the maximum sum of a contiguous subsequence.

• Consider:

- What if all the numbers were positive?
- What if they all were negative?
- What if we left out "contiguous"?

Formal Definition: Maximum Contiguous Subsequence Sum

Problem definition: Given a non-empty sequence of *n* (possibly negative) integers $A_1, A_2, ..., A_n$, find the maximum consecutive subsequence $S_{i,j} = \sum_{k=i}^{j} A_k$, and the corresponding values of *i* and *j*.

Quiz questions:

- In {−2, 11, −4, 13, −5, 2}, S_{2,4} = ?
- In {1, -3, 4, -2, -1, 6}, what is MCSS?
- If every element is negative, what's the MCSS?

1-based indexing. We'll use when analyzing b/c easier

Write a simple correct algorithm Q5 now

- Must be easy to explain
- Correctness is KING. Efficiency doesn't matter yet.
- 3 minutes
- Examples to consider:
 {-3, 4, 2, 1, -8, -6, 4, 5, -2}
 {5, 6, -3, 2, 8, 4, -12, 7, 2}

Q6, Q Analysis of this Algorithm

What statement is executed the most often?How many times?

//In the analysis we use "n" as a shorthand for "a length "
for(int i = 0; i < a.length; i++)
for(int j = i; j < a.length; j++) {
 int thisSum = 0;
 for(int k = i; k <= j; k++)
 thisSum += a[k];</pre>

Interlude

 Computer Science is no more about computers than astronomy is about _____

Donald Knuth

Interlude

 Computer Science is no more about computers than astronomy is about <u>telescopes</u>.

Donald Knuth

Where do we stand?

- We showed MCSS is O(n³).
 - Showing that a problem is O(g(n)) is relatively easy just analyze a known algorithm.

• Is MCSS $\Omega(n^3)$?

- Showing that a problem is Ω (g(n)) is much tougher. How do you prove that it is impossible to solve a problem more quickly than you already can?
- Or maybe we can find a faster algorithm?

 $\begin{array}{l} f(n) \text{ is } O(g(n)) \text{ if } f(n) \leq cg(n) \text{ for all } n \geq n_0 \\ \circ \text{ So } O \text{ gives an upper bound} \\ f(n) \text{ is } \Omega(g(n)) \text{ if } f(n) \geq cg(n) \text{ for all } n \geq n_0 \\ \circ \text{ So } \Omega \text{ gives a lower bound} \\ f(n) \text{ is } \theta(g(n)) \text{ if } c_1g(n) \leq f(n) \leq c_2g(n) \text{ for all } n \geq n_0 \\ \circ \text{ So } \theta \text{ gives a tight bound} \\ \circ \text{ f(n) is } \theta(g(n)) \text{ if it is both } O(g(n)) \text{ and } \Omega(g(n)) \end{array}$

What is the main source of the simple algorithm's inefficiency?

//In the analysis we use "n" as a shorthand for "a length "
for (int i = 0; i < a.length; i++)
for (int j = i; j < a.length; j++) {
 int thisSum = 0;
 for (int k = i; k <= j; k++)
 thisSum += a[k];</pre>

The performance is bad!

Eliminate the most obvious inefficiency...

}

]

- for(int i = 0; i < a.length; i++) {
 int thisSum = 0;
 for(int j = i; j < a.length; j++) {
 thisSum += a[j];</pre>
 - if(thisSum > maxSum) {
 maxSum = thisSum;
 seqStart = i;
 seqEnd = j;

MCSS is O(n²)

• Is MCSS $\Omega(n^2)$?

- Showing that a problem is Ω (g(n)) is much tougher. How do you prove that it is impossible to solve a problem more quickly than you already can?
- Can we find a yet faster algorithm?

 $\begin{array}{l} f(n) \text{ is } O(g(n)) \text{ if } f(n) \leq cg(n) \text{ for all } n \geq n_0 \\ \circ \text{ So O gives an upper bound} \\ f(n) \text{ is } \Omega(g(n)) \text{ if } f(n) \geq cg(n) \text{ for all } n \geq n_0 \\ \circ \text{ So } \Omega \text{ gives a lower bound} \\ f(n) \text{ is } \theta(g(n)) \text{ if } c_1g(n) \leq f(n) \leq c_2g(n) \text{ for all } n \geq n_0 \\ \circ \text{ So } \theta \text{ gives a tight bound} \\ \circ \text{ f(n) is } \theta(g(n)) \text{ if it is both } O(g(n)) \text{ and } \Omega(g(n)) \end{array}$

<mark>Q8, Q9</mark>

Can we do even better?

Tune in next time for the exciting conclusion!

Think about the 7,2 on the other side of the -12: {5, 6, -3, 2, 8, 4, -12, 7, 2}