
Maximum Contiguous Subsequence Sum

After today’s class you will be able to:
state and solve the MCSS problem on small arrays by observation

find the exact runtimes of the naive MCSS algorithms

https://openclipart.org/image/2400px/svg_to_png/169467/bow_tie.png

So why would we ever sort first to do binary search?

 Consider the limit

 What does it say about asymptotic relationship
between f and g if this limit is…
◦ 0?

◦ finite and non-zero?

◦ infinite?

)(

)(
lim

ng

nf

n

Q12, day 2

1. n and n2

2. log n and n (on these questions and solutions
ONLY, let log n mean natural log)

3. n log n and n2

4. logan and logbn (a < b)

5. na and an (a > 1)

6. an and bn (a < b) Recall l’Hôpital’s rule:
under appropriate conditions,

Q13-15

1. n is O(n2); n2 is W(n)
2. log n is O(n); n is W(log n)
3. n log n is O(n2); n2 is W(n log n). (Use l’Hopital’s rule)

4. logan is Q(logbn) (so logbn is Q(logan))
Hint: Rewrite logan as log n/log a and logbn as log n/log b.

Simplifying, we see that the original limit is a constant: no
differentiating is needed here either.

5. na is O(an) and is o(an); an is W(na) and w(na)
Hint: use l’Hopital’s rule repeatedly until numerator goes to 0.

6. an is O(bn) and is o(bn); bn is W(an) and w(an)
Hint: rewrite as (a/b)n. Because a < b, a/b < 1, and when x < 1,

xn approaches 0 as n goes to infinity.

A deceptively deep problem
with a surprising solution.

{-3, 4, 2, 1, -8, -6, 4, 5, -2}

Q1

 It’s interesting

 Analyzing the obvious solution is instructive

 We can make the program more efficient

 Problem: Given a sequence of numbers, find
the maximum sum of a contiguous
subsequence.

 Consider:
◦ What if all the numbers were positive?

◦ What if they all were negative?

◦ What if we left out “contiguous”?

 Quiz questions:
◦ In {-2, 11, -4, 13, -5, 2}, S2,4 = ?

◦ In {1, -3, 4, -2, -1, 6}, what is MCSS?

◦ If every element is negative, what’s the MCSS?

1-based indexing. We’ll use
when analyzing b/c easier

Q2-4

◦ Must be easy to explain

◦ Correctness is KING. Efficiency doesn’t matter yet.

◦ 3 minutes

 Examples to consider:
◦ {-3, 4, 2, 1, -8, -6, 4, 5, -2}

◦ {5, 6, -3, 2, 8, 4, -12, 7, 2}

Q5

Where

will this

algorithm

spend the

most

time?

How many times

(exactly, as a function of
N = a.length) will that
statement execute?

i: beginning of
subsequence

j: end of
subsequence

k: steps through
each element of
subsequence

Find the sums of
all subsequences

 What statement is executed the most often?

 How many times?

Q6, Q7

 Computer Science is no more about
computers than astronomy is about .

Donald Knuth

 Computer Science is no more about
computers than astronomy is about
telescopes.

Donald Knuth

 We showed MCSS is O(n3).
◦ Showing that a problem is O(g(n)) is relatively easy – just

analyze a known algorithm.

 Is MCSS W(n3)?
◦ Showing that a problem is W (g(n)) is much tougher. How do

you prove that it is impossible to solve a problem more
quickly than you already can?

◦ Or maybe we can find
a faster algorithm?

 The performance is bad!

This is Θ(?)

 Is MCSS W(n2)?
◦ Showing that a problem is W (g(n)) is much tougher. How do

you prove that it is impossible to solve a problem more
quickly than you already can?

◦ Can we find a yet faster algorithm?

Tune in next time for the
exciting conclusion!

Think about the 7,2 on the
other side of the -12:

{5, 6, -3, 2, 8, 4, -12, 7, 2}

Q8, Q9

