CSSE 230 Day 3

Maximum Contiguous Subsequence Sum

After today’s class you will be able to:

state and solve the MCSS problem on small arrays by observation
find the exact runtimes of the naive MCSS algorithms

https://openclipart.org/image/2400px/svg_to_png/169467/bow_tie.png

Andrew Hettlinger » Matt Boutell
Movember 6 at 12:30pm - Al

In your class, | never thought I'd actually use big O notation, but now | find
myself using it in my complaints to coworkers about how a previous
developer would sort a list before doing a binary search o find a single
element O{nlogn) + O(logn) instead of just doing a linear search O(n). |
feel really nerdy now (as if | didn't before (22)

Like - Comment

So why would we ever sort first to do binary search?

Limits and Asymptotics

» Consider the limit . f(r
im

N—0o0 g(n)

» What does it say about asymptotic relationship
between f and g if this limit is...
> 07
> finite and non-zero?
o infinite?

Q12, day 2

Apply this limit property to the
following pairs of functions

1. n and n?

2. log n and n (on these questions and solutions
ONLY, let log n mean natural log)

3.n log n and n?

4. log,n and logy,n (a < b)
s.nfand a” (@> 1)

6

~a"and b" (a < b) |Recall I’'Hépital’s rule:
under appropriate conditions,

lim M = lim f'(n)
n—oo g(n) n—oo g'(n)

Q13-15

Answers

. nis On?):; n?is Q(n)
2. log nis O(n); nis Q(log n)
3. nlog nis O(n?); n?is Q(n log n). (Use I'Hopital’s rule)

4. log,n is ®(log,n) (so logyn is ®(log,n))
Hint: Rewrite log,n as Iog n/log a and log,n as log n/log b.

Simplifying, we see that the original limit is a constant: no
differentiating is needed here either.

5. n?is O(a") and is o(a"); a" is Q(n?) and »w(n?)
Hint: use I'Hopital’s rule repeatedly until numerator goes to O.

6. amis O(b") and is o(b"); b" is Q(a") and w(a")
Hint: rewrite as (a/b)". Because a < b, a/b < 1, and when x < 1,
x" approaches 0 as n goes to infinity.

Why do we look at this problem?

» It’s interesting
» Analyzing the obvious solution is instructive

» We can make the program more efficient

A Nice Algorithm Analysis Example

» Problem: Given a sequence of numbers, find
the maximum sum of a contiguous

subsequence.

» Consider:
- What if all the numbers were positive?
- What if they all were negative?
- What if we left out “contiguous™?

Formal Definition: Maximum
Contiguous Subsequence Sum

Problem definition: Given a non-empty
sequence of n (possibly negative) integers
Ay, Az, ..., A, find the maximum consecutive
subsequence S; ; = L; Ay, and the
corresponding values of i and ;.

» Quiz questions:
> In{-2,11,-4,13,-5,2} S, ,=7
- In{1, -3, 4, -2, -1, 6}, what is MCSS?
- If every element is negative, what’s the MCSS?

1-based indexing. We’ll use

when analyzing b/c easier

Q2-4

Write a simple correct algorithm Q>
now

> Must be easy to explain
- Correctness is KING. Efficiency doesn’t matter yet.
> 3 minutes

» Examples to consider:
O{_3!4121]1_81 _61 4) 51_2}
0{5161 _312181 41_]21 71 2}

First Algorithm Find the sums of
all subsequences

0;

public final class MaxSubTest {
private static int segStart =
private static int seqgEnd = 0;

/* First maxXimum contiguous subsequence sum algorithm.
* geqgttart and segEnd represent the actual best sedquence.

*/
public static int maxSubSuml(int [] a) {
i: beginning of _| int maxSum = 0; Where

subsequence --~£@L:;mMWQSWEum”N%maﬂmﬂkmdﬁn”akmgh - -
a for(in® i = 0; i < a.length; i++) " will this

- for(int,j = i; j < a.length; j++) { | algorithm
J: end of — int thisSum = 0; g
subsequence spend the

for(int k = i; k <= j; k++) most

k: StEDS through /fﬁs'Sum += al[k]; &time’)
each element of 1 if(thisSum > maxSum) { :
subsequence maxSum = thisSum;

segStart = 1i; _

seqEnd = j; How many times

} } (exactly, as a function of
return maxsSum; N = a.length) will that
} statement execute?

Q6, Q7
Analysis of this Algorithm

» What statement is executed the most often?
» How many times?

//In the analys1s we use "n" as a shorthand for "a length "
for(int 1 = 0; 1 < a.length; i++)
for(int 3 = 1i; jJ < a.length; J3++) {
int thisSum = 0;

for(int k = 1; k <= j; k++)
thisSum += al[k];

Interlude

» Computer Science is nho more about
computers than astronomy is about

Donald Knuth

Interlude

» Computer Science is nho more about
computers than astronomy is about
telescopes.

Donald Knuth

Where do we stand?

» We showed MCSS is O(n3).

- Showing that a problem is O(g(n)) is relatively easy - just
analyze a known algorithm.

» Is MCSS Q(n3)?

- Showing that a problem is Q (g(n)) is much tougher. How do
you prove that it is impossible to solve a problem more
quickly than you already can?

f(n) is O(g(n)) if f(n) < cg(n) for all n = n,
o Or maybe we can find |- so0 gives an upper bound
a faster algorithm? f(n) is Q(g(n)) if f(n) = cg(n) for all n = n,
- So Q gives a lower bound
f(n) is 6(g(n)) if c;g(n) < f(n) < c,g(n) for all n = n,
> So 6 gives a tight bound
> f(n) is 6(g(n)) if it is both O(g(n)) and Q(g(n))

What is the main source of the simple
algorithm’s inefficiency?

//In the analysis we use "n" as a shorthand for "a.length "
for{({ int 1 = 0; 1 <€ a.length; i++)
for(int 3 = 1; jJ < a.length; j++) {
int thisSum = 0;

for(int k = i; k <= j; k++)
thisSum += a[k];

» The performance is bad!

Eliminate the most obvious
inefficiency...

for{ int 1 = 0; 1 < a.length; 1i++)} {
int thiss5um = 07
for{ int J =1i; 7 < a.length; j++) {
this5um += a[J]:;

1f{ this5um > maxSum } {
maxsSum = thisSum;
segstart 1;
seqgbEnd I

_— This is O(?)

MCSS is O(n?)

» Is MCSS Q(n?2)?

> Showing that a problem is Q (g(n)) is much tougher. How do
you prove that it is impossible to solve a problem more
quickly than you already can?

- Can we find a yet faster algorithm?

f(n) is O(g(n)) if f(n) < cg(n) for all n = n,

> So O gives an upper bound

f(n) is Q(g(n)) if f(n) = cg(n) for all n = n,

- So Q gives a lower bound

f(n) is 6(g(n)) if c;g(n) < f(n) < c,g(n) for all n = n,
> So 6 gives a tight bound

> f(n) is 6(g(n)) if it is both O(g(n)) and Q(g(n))

