
Maximum Contiguous Subsequence Sum

After today’s class you will be able to:
state and solve the MCSS problem on small arrays by observation

find the exact runtimes of the naive MCSS algorithms
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So why would we ever sort first to do binary search?



 Consider the limit

 What does it say about asymptotic relationship 
between f and g if this limit is…
◦ 0?

◦ finite and non-zero?

◦ infinite?
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1. n and n2 

2. log n and n (on these questions and solutions 
ONLY, let log n mean natural log)

3. n log n and n2

4. logan and logbn (a < b) 

5. na and an (a > 1)

6. an and bn (a < b) Recall l’Hôpital’s rule: 
under appropriate conditions,

Q13-15



1. n is O(n2); n2 is W(n)
2. log n is O(n); n is W(log n)
3. n log n is O(n2); n2 is W(n log n).  (Use l’Hopital’s rule)

4. logan is Q(logbn) (so logbn is Q(logan))
Hint: Rewrite logan as log n/log a and logbn as log n/log b. 

Simplifying, we see that the original limit is a constant: no 
differentiating is needed here either.

5. na is O(an) and is o(an); an is W(na) and w(na)
Hint: use l’Hopital’s rule repeatedly until numerator goes to 0.

6. an is O(bn) and is o(bn); bn is W(an) and w(an)
Hint: rewrite as (a/b)n. Because a < b, a/b < 1, and when x < 1, 

xn approaches 0 as n goes to infinity.



A deceptively deep problem 
with a surprising solution.

{-3, 4, 2, 1, -8, -6, 4, 5, -2}

Q1



 It’s interesting

 Analyzing the obvious solution is instructive

 We can make the program more efficient



 Problem: Given a sequence of numbers, find 
the maximum sum of a contiguous 
subsequence.

 Consider:
◦ What if all the numbers were positive?

◦ What if they all were negative?

◦ What if we left out “contiguous”?



 Quiz questions:
◦ In {-2, 11, -4, 13, -5, 2}, S2,4 = ?

◦ In {1, -3, 4, -2, -1, 6}, what is MCSS?

◦ If every element is negative, what’s the MCSS?

1-based indexing. We’ll use 
when analyzing b/c easier
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◦ Must be easy to explain

◦ Correctness is KING. Efficiency doesn’t matter yet.

◦ 3 minutes

 Examples to consider:
◦ {-3, 4, 2, 1, -8, -6, 4, 5, -2}

◦ {5, 6, -3, 2, 8, 4, -12, 7, 2} 
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Where 

will this 

algorithm 

spend the 

most 

time?

How many times 

(exactly, as a function of 
N = a.length) will that 
statement execute?

i: beginning of 
subsequence

j: end of 
subsequence

k: steps through 
each element of 
subsequence

Find the sums of 
all subsequences



 What statement is executed the most often?

 How many times?
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 Computer Science is no more about 
computers than astronomy is about .

Donald Knuth



 Computer Science is no more about 
computers than astronomy is about 
telescopes.

Donald Knuth



 We showed MCSS is O(n3). 
◦ Showing that a problem is O(g(n)) is relatively easy – just 

analyze a known algorithm.

 Is MCSS W(n3)? 
◦ Showing that a problem is W (g(n)) is much tougher. How do 

you prove that it is impossible to solve a problem more 
quickly than you already can?

◦ Or maybe we can find 
a faster algorithm?



 The performance is bad!



This is Θ(?)



 Is MCSS W(n2)? 
◦ Showing that a problem is W (g(n)) is much tougher. How do 

you prove that it is impossible to solve a problem more 
quickly than you already can?

◦ Can we find a yet faster algorithm?



Tune in next time for the 
exciting conclusion!

Think about the 7,2 on the 
other side of the -12:

{5, 6, -3, 2, 8, 4, -12, 7, 2} 
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