
More hash tables
EditorTrees

Check out from SVN:
 HashSetExercise (individ repos)

 See schedule page

 Google created a new hash function for Strings,
reported to be 30-50% faster than others:

http://google-opensource.blogspot.com/2011/04/introducing-cityhash.html

 Questions?

http://google-opensource.blogspot.com/2011/04/introducing-cityhash.html

 But if there’s already an element at
(hashCode() % m), we have a
collision!

hashCode() “ate” mod 48594983 83 ate

…
82
83
84
…

 Collision? Use the next available space:
◦ Try H+1, H+2, H+3, …
◦ Wraparound at the end of the array

 Problem: Clustering

 Animation:
◦ http://www.cs.auckland.ac.nz/software/AlgAnim/h

ash_tables.html

http://www.cs.auckland.ac.nz/software/AlgAnim/hash_tables.html
http://www.cs.auckland.ac.nz/software/AlgAnim/hash_tables.html

 Expected number of probes =
◦ 1

1−𝜆
 ignoring clustering:

◦ 1
2

1 + 1
1−𝜆 2 taking clustering into account

◦ Recall λ is the load Factor

 Can we do better?

8

 Linear probing:
◦ Collision at H? Try H, H+1, H+2, H+3,...

 Quadratic probing:
◦ Collision at H? Try H, H+12. H+22, H+32, ...
◦ Eliminates primary clustering, but can cause

“secondary clustering”

 Choose a prime number p for the array size
 Then if λ ≤ 0.5:
◦ Guaranteed insertion
 If there is a “hole”, we’ll find it
◦ No cell is probed twice

 See proof of Theorem 20.4:
◦ Suppose that we repeat a probe before trying more

than half the slots in the table
◦ See that this leads to a contradiction
 Contradicts fact that the table size is prime

11

 Use an algebraic trick to calculate next index
◦ Replaces mod and general multiplication
◦ Difference between successive probes yields:
 Probe i location, Hi = (Hi-1 + 2i – 1) % M
◦ Just use bit shift to “multiply” i by 2
◦ Don’t need mod, since i is at most M/2, so
 probeLoc= probeLoc+ (i << 1) - 1;

if (probeLoc >= M)
 probeLoc -= M;

 No one has been able to analyze it!
 Experimental data shows that it works well
◦ Provided that the array size is prime, and is the

table is less than half full

 Use an array of linked lists
 How would that help resolve collisions?

Java 6’s HashMap uses chaining and a table
size that is a power of 2. This table size
avoids the mod operator. What might it use
instead to make hashCodes() point to table
locations?
(http://www.javaspecialists.eu/archive/Issue054.html)

12

~40 minutes
On a handout and in your repository

Do it with your "EditorTrees" team
There's a handout for everyone, but only one submission per

team

Check out from SVN:
 HashSetExercise (individ repos)

	CSSE 230 Day 19
	Announcements
	Review: hash codes distribute keys across an array
	Collision Resolution: Linear Probing
	Linear Probing Efficiency
	Quadratic Probing
	Quadratic Probing Tricks (1/2)
	Quadratic Probing Tricks (2/2)
	Quadratic probing analysis
	Another Approach: Separate Chaining
	Hashing with Chaining
	Hash Table Exercise

