CSSE 230

Hash table basics

After today, you should be able to...
...explain how hash tables perform insertion in
amortized O(1) time given enough space

82
“ate"e > 485949839“ >83 o5
84

Reminder: Exam 2

» Topics: weeks 1-6
- Reading, programs, in-class, written assignments.
- Especially
- Algorithm analysis in general

- Binary trees, including BST, AVL, R/B, and threaded
- Traversals and iterators, size vs. height, rank
- Backtracking / Queens problem

» Questions on this or anything else course-
related?

Big picture: a map gives dictionary storage

» Map: insertion, retrieval, and deletion of items by
key. Examples:

Map<String, Integer> wordCounts;

Map<Integer, Student> students;

count = wordCounts.get(“best”);

students.add(56423302, new Student(...))l

(¢] o (¢] o

» Implementation choices:
- TreeMap uses a balanced tree
- TreeSet is a TreeMap with no values
- The BST assignment is an unbalanced TreeSet

- HashMap uses a hash table
- HashSet is a HashMap with no values

A hash table is a very fast approach to dictionary
storage

» Insertion and lookup are constant time!
- With a good “hash function”
- And large enough storage array

» Doesn’t keep items ordered
- So NOT for sorted data

Direct Address Tables

direct access table

collection IT
0! 1
L Ny T
I N
) 1! i

III:I 0.
k k
» Issues?

» Array of size m
» n elements with unique keys

» If n < m, then use the key as an array
index.
> Clearly O(1) lookup of keys

- Keys must be unique.

- Often the range of potential keys is much larger
than the storage we want for an array

- Example: RHIT student IDs vs. # Rose students

Diagram from John Morris, University of Western Australia

We attempt to create unique keys
by applying a .hashCode() function ...

key > HiEE (865100 > integer

Objects that are .equals() MUST
have the same hashCode values

A good hashCode() also

is fast to calculate and

distributes the keys, like:

hashCode(“ate”)= 48594983
hashCode(“ape”)= 76849201
hashCode(*awe”) = 14893202

...and then take it mod the table size (m) to get an
index into the array.

» Example: if m = 100:

nashCode(“ate”)= 48594983
hashCode(“ape”)= 76849201
nashCode(“awe”) = 1489036

->83
-201
=236

Index calculated from the object itself, not from 3-4
a comparison with other objects

» How Java’s hashCode() is used:

82
“ate"e > 48594983%“ >83 SFw
84

> Unless this position is already occupied

i

Some hashCode() implementations

» Default if you inherit Object’s: memory location

» Many JDK classes override hashCode()
> Integer: the value itself
> Double: XOR first 32 bits with last 32 bits
> String: we’ll see shortly!
- Date, URL, ...

» Custom classes should override hashCode()
- Use a combination of final fields.

- If key is based on mutable field, then the hashcode will
change and you will lose it!

A simple hash function for Strings is a function
of every character

public static int hash(String s) {
int total = 0;
for (int i=0; i<s.length(); i++)
total = total + s.charAt (i) ;
return Math.abs (total) ;

}

» Advantages?

» Disadvantages?

A better hash function for Strings uses place
value

public static int hash(String s) {
int total = 0;
for (int i=0; i<s.length(); i++)
total = total*256 + s.charAt(i);
return Math.abs (total) ;

}

» Spreads out the values more, and anagrams not an issue.
» What about overflow during computation?

- What happens to first characters?

A better hash function for Strings uses place
value with a base that’s prime

public static int hash(String s) {
int total = 0;
for (int i=0; i<s.length(); i++)
total = total*31 + s.charAt (i) ;
return Math.abs (total) ;

}

» Spread out, anagrams OK, overflow OK.

» This is String’s hashCode () method.
» The (x = 31x + y) pattern is a good one to follow.

Collisions are inevitable 7

“ate"e > 485949839“ >83 S5

84

» A good hashcode distributes keys evenly, but
collisions will still happen

» hashCode() are ints 2 only ~4 billion unique values.
- How many 16 character ASCII strings are possible?

» If n is small, tables should be much smaller
- mod will cause collisions

» Solutions:
> Chaining
> Probing (Linear, Quadratic)

Separate chaining: an array of linked lists

Examples: .get(“at”), .get(“him),

Easy to code - gettl -
Easy to deal with collisions (hashcode=18), .add(*him”), .delete(*with")

C

6 7 8 9 10 11 12 13 14 15 o 17 18 19 20

0 1 2 3 4 5
i ® P
et i ¢ at B ? B ? Y EY I

A OR HAVE BE FOR BUT HAD AN NOT AND FROM THIS THEY IS ON
=} ® ? ® ® ® ® ®
Y Y Y \} Y Y Y Y
THE HIS WAS HE THAT AT BY WITH
@ ®
Y Y
OF IT

Java’s HashMap uses chaining and a table

size that is a power of 2.

Runtime of hashing with chaining depends on 271°

the load factor

I/hlll/lmllﬂrlf Tmmmmmmmimmwf
S sants
m array slots,

n items.
Load factor, A=n/m.

Runtime = O(\)
Space-time trade-off

1. If m constant, then O(n)
2. If keep m~0.5n (by doubling), then

Alternative: Store collisions in other array
slots.

» No memory required for pointers
- Historically, this was important!

» Will need to keep load factor (A=n/m) low or
else collisions degrade performance

» The logic is slightly more complicated
- And uses some interesting math

Collision Resolution: Linear Probing

» Probe H (see if it causes a collision)

» Collision? Also probe the next available space:
> Try H, H+1, H+2, H+3, ...
- Wraparound at the end of the array

» Example on board: .add() and .get()
» Problem: Clustering

» Animation:

11

http://www.cs.auckland.ac.nz/software/AlgAnim/hash_tables.html

hash (89, 10) = 9
hash (18, 10) = 8
hash (49, 10) = 9
hash (58, 10) = 8
hash (9, 10) = 9
After insert 89 After insert 18 After insert 49 Afterinsert 58 After insert 9
Figure 20.4 0 29 19 ”
Linear probing hash
table after each 1 58 58
insertion 2 9
3
Good example 4
of clustering 5
and wraparound
6
7
8 18 18 18 18
9 89 89 89 89 89

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss ~ © 2002 Addison Wesley

Linear probing efficiency also depends on load
factor, A, = n/m

» For probing to work, 0 <A < 1.

» For a given A, what is the expected number
of probes before an empty location is found?

12

Rough Analysis of Linear Probing

» Assume all locations are equally likely to be
occupied, and equally likely to be the next
one we |look at.

» Then the probability that a given cell is full is
A and probability that a given cell is empty is
1-\.

» What's the expected number?

oo 1
NP1 - Np= ——

P AT A=Np =15

p=1

Better Analysis of Linear Probing

» Clustering!

- Blocks of occupied cells are formed

- Any collision in a block makes the block bigger
» Two sources of collisions:

> |dentical hash values
- Hash values that hit a cluster

» Actual average number of probes for large A:

%(1 ’ (1—1»2)

For a proof, see Knuth, The Art of Computer Programming, Vol 3:

Searching Sorting, 2nd ed, Addision-Wesley, Reading, MA, 1998.

13

Why consider linear probing?

» Easy to implement
» Simple code has fast run time per probe

» Works well when load factor is low
- |n practice, once A > 0.5, we usually double the size
of the array and rehash

> This is more efficient than letting the load factor
get high

To reduce clustering, probe farther apart

» Linear probing:
> Collision at H? Try H, H+1, H+2, H+3,...

» Quadratic probing:
- Collision at H? Try H, H+12. H+22, H+32, ...

> Eliminates primary clustering. “Secondary
clustering” isn’t as problematic

Quadratic Probing works best with low A and 14
prime m

» Choose a prime number for the array size, m
» Then if A < 0.5

- Guaranteed insertion
- |If there is a “hole”, we’ll find it
- No cell is probed twice

For a proof, see Theorem 20.4:
Suppose that we repeat a probe before trying more than half
the slots in the table

See that this leads to a contradiction
Contradicts fact that the table size is prime

Quadratic Probing runs quickly if we implement
it correctly

» Use an algebraic trick to calculate next index

- Difference between successive probes yields:
- Probe i location, H, = (H_, + 2i-1) % M

1. Just use bit shift to multiply i by 2
- probelLoc= probelLoc + (i << 1) - 1;
...faster than multiplication

2. Sinceiis at most M/2, can just check:

- if (probelLoc >= M)
probelLoc -= M;
...faster than mod

Quadratic probing analysis

» No one has been able to analyze it!

» Experimental data shows that it works well
> Provided that the array size is prime, and A < 0.5

» If you are interested, you can do the optional
HashSet exercise.

» This week’s homework takes a couple
questions from there.

http://www.rose-hulman.edu/class/csse/csse230/201430/InClassExercises/

Summary: 15-17
Hash tables are fast for some operations

Structure —linsert | Find value | Find max value _

Unsorted array
Sorted array
Bal BST

Hash table

» Finish the quiz.

» Then check your answers with the next slide
» Then you have worktime

Answers:

S Jiser - nd ke i maxalie

Unsorted array Amortized 0(1) 0(n)
Sorted array 0(n) (Iog n) 0(1)
Bal BST 0(log n) 0(log n) 0(log n)

Hash table Amortized 6(1) Amortized 6(1) 0(n)

