CSSE 230 Hash table basics

After today, you should be able to... ...explain how hash tables perform insertion in amortized O(1) time given enough space

Reminder: Exam 2

- Topics: weeks 1–6
 - Reading, programs, in-class, written assignments.
 - Especially
 - Algorithm analysis in general
 - Binary trees, including BST, AVL, R/B, and threaded
 - Traversals and iterators, size vs. height, rank
 - Backtracking / Queens problem

Questions on this or anything else courserelated?

Hashing

Efficiently putting 5 pounds of data in a 20 pound bag

Big picture: a map gives dictionary storage

- Map: insertion, retrieval, and deletion of items by key. Examples:
 - Map<String, Integer> wordCounts;
 - Map<Integer, Student> students;
 - o count = wordCounts.get("best");
 - students.add(56423302, new Student(...))
- Implementation choices:
 - **TreeMap** uses a balanced tree
 - TreeSet is a TreeMap with no values
 - The BST assignment is an unbalanced TreeSet
 - HashMap uses a hash table
 - HashSet is a HashMap with no values

A hash table is a very fast approach to dictionary storage

- Insertion and lookup are constant time!
 - With a good "hash function"
 - And large enough storage array
- Doesn't keep items ordered
 - So NOT for sorted data

On average

Direct Address Tables

- Array of size m
- n elements with unique keys
- If n ≤ m, then use the key as an array index.
 - Clearly O(1) lookup of keys

- Issues?
 - Keys must be unique.
 - Often the range of potential keys is much larger than the storage we want for an array
 - Example: RHIT student IDs vs. # Rose students

Diagram from John Morris, University of Western Australia

We attempt to create unique keys by applying a .hashCode() function ...

Objects that are .equals() MUST have the same hashCode values A good hashCode() also is fast to calculate and distributes the keys, like:

hashCode("ate")= 48594983 hashCode("ape")= 76849201 hashCode("awe") = 14893202 ...and then take it mod the table size (m) to get an index into the array.

• Example: if m = 100:

hashCode("ate")= 48594983 hashCode("ape")= 76849201 hashCode("awe") = 1489036

Index calculated from the object itself, not from ³⁻⁴ a comparison with other objects

How Java's hashCode() is used:

Some hashCode() implementations

Default if you inherit Object's: memory location

Many JDK classes override hashCode()

- Integer: the value itself
- Double: XOR first 32 bits with last 32 bits
- String: we'll see shortly!
- Date, URL, ...
- Custom classes should override hashCode()
 - Use a combination of final fields.
 - If key is based on mutable field, then the hashcode will change and you will lose it!

A simple hash function for Strings is a function of every character

```
// This could be in the String class
public static int hash(String s) {
    int total = 0;
    for (int i=0; i<s.length(); i++)
        total = total + s.charAt(i);
    return Math.abs(total);
}</pre>
```

- Advantages?
- Disadvantages?

A better hash function for Strings uses place value

```
// This could be in the String class
public static int hash(String s) {
    int total = 0;
    for (int i=0; i<s.length(); i++)
        total = total*256 + s.charAt(i);
    return Math.abs(total);
}</pre>
```

- Spreads out the values more, and anagrams not an issue.
- What about overflow during computation?
 - What happens to first characters?

A better hash function for Strings uses place value with a base that's prime

```
// This could be in the String class
public static int hash(String s) {
    int total = 0;
    for (int i=0; i<s.length(); i++)
        total = total*31 + s.charAt(i);
    return Math.abs(total);
}</pre>
```

- Spread out, anagrams OK, overflow OK.
- This is String's hashCode() method.
- The (x = 31x + y) pattern is a good one to follow.

Collisions are inevitable

- A good hashcode distributes keys evenly, but collisions will still happen
- hashCode() are ints → only ~4 billion unique values.
 How many 16 character ASCII strings are possible?
- If n is small, tables should be much smaller
 mod will cause collisions
- Solutions:
 - Chaining
 - Probing (Linear, Quadratic)

Separate chaining: an array of linked lists

Easy to code Easy to deal with collisions Examples: .get("at"), .get("him), (hashcode=18), .add("him"), .delete("with")

Java's **HashMap** uses chaining and a table size that is a power of 2.

Runtime of hashing with chaining depends on ⁹⁻¹⁰ the load factor

m array slots, n items. Load factor, $\lambda = n/m$.

Runtime = $O(\lambda)$

Space-time trade-off

- 1. If m constant, then O(n)
- 2. If keep m~0.5n (by doubling), then amortized O(1)

Alternative: Store collisions in other array slots.

- No memory required for pointers
 - Historically, this was important!
- \blacktriangleright Will need to keep load factor ($\lambda{=}n/m)$ low or else collisions degrade performance
- The logic is slightly more complicated
 And uses some interesting math

Collision Resolution: Linear Probing

- Probe H (see if it causes a collision)
- Collision? Also probe the next available space:
 - Try H, H+1, H+2, H+3, ...
 - Wraparound at the end of the array
- Example on board: .add() and .get()
- Problem: Clustering
- Animation:
 - <u>http://www.cs.auckland.ac.nz/software/AlgAnim/has</u> <u>h_tables.html</u>

hash	(89,	10)	=	9
hash	(18,	10)	=	8
hash	(49,	10)	=	9
hash	(58,	10)	=	8
hash	(9,	10)	=	9

After insert 89 After insert 18 After insert 49 After insert 58 After insert 9

Figure 20.4 Linear probing hash table after each insertion

Good example of clustering and wraparound

Linear probing efficiency also depends on load factor, $\lambda = n/m$

For probing to work, $0 \le \lambda \le 1$.

For a given λ, what is the expected number of probes before an empty location is found?

Rough Analysis of Linear Probing

- Assume all locations are equally likely to be occupied, and equally likely to be the next one we look at.
- Then the probability that a given cell is full is λ and probability that a given cell is empty is $1-\lambda$.
- What's the expected number?

$$\sum_{p=1}^{\infty} \lambda^{p-1} (1-\lambda)p = \frac{1}{1-\lambda}$$

Better Analysis of Linear Probing

Clustering!

- Blocks of occupied cells are formed
- Any collision in a block makes the block bigger
- Two sources of collisions:
 - Identical hash values
 - Hash values that hit a cluster
- Actual average number of probes for large λ :

$$\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^2}\right)$$

For a proof, see Knuth, The Art of Computer Programming, Vol 3: Searching Sorting, 2nd ed, Addision–Wesley, Reading, MA, 1998.

Why consider linear probing?

- Easy to implement
- Simple code has fast run time per probe
- Works well when load factor is low
 - In practice, once $\lambda > 0.5$, we usually **double the size of the array** and rehash
 - This is more efficient than letting the load factor get high

To reduce clustering, probe farther apart

Linear probing:

• Collision at H? Try H, H+1, H+2, H+3,...

• Quadratic probing:

- Collision at H? Try H, $H+1^2$. $H+2^2$, $H+3^2$, ...
- Eliminates primary clustering. "Secondary clustering" isn't as problematic

Quadratic Probing works best with low λ and prime m

- Choose a prime number for the array size, m
- Then if $\lambda \leq 0.5$:
 - Guaranteed insertion
 - If there is a "hole", we'll find it
 - No cell is probed twice

For a proof, see Theorem 20.4:

Suppose that we repeat a probe before trying more than half the slots in the table

See that this leads to a contradiction

Contradicts fact that the table size is prime

Quadratic Probing runs quickly if we implement it correctly

- Use an algebraic trick to calculate next index
 - Difference between successive probes yields:
 - Probe i location, $H_i = (H_{i-1} + 2i 1) \% M$
 - 1. Just use bit shift to multiply i by 2
 - probeLoc = probeLoc + (i << 1) 1;
 - ...faster than multiplication
 - 2. Since i is at most M/2, can just check:
 - if (probeLoc >= M) probeLoc -= M;
 - ...faster than mod

Quadratic probing analysis

- No one has been able to analyze it!
- Experimental data shows that it works well
 - $\circ\,$ Provided that the array size is prime, and $\lambda<0.5$

- If you are interested, you can do the optional HashSet exercise.
 - <u>http://www.rose-hulman.edu/class/csse/csse230/201430/InClassExercises/</u>
- This week's homework takes a couple questions from there.

Summary: Hash tables are fast for some operations

Structure	insert	Find value	Find max value
Unsorted array			
Sorted array			
Bal BST			
Hash table			

15 - 17

- Finish the quiz.
- Then check your answers with the next slide
- Then you have worktime

Answers:

Structure	insert	Find value	Find max value
Unsorted array	Amortized $\theta(1)$	θ(n)	θ(n)
Sorted array	θ(n)	θ(log n)	θ(1)
Bal BST	θ(log n)	θ(log n)	θ(log n)
Hash table	Amortized $\theta(1)$	Amortized $\theta(1)$	θ(n)