CSSE 230 Hash table basics

After today, you should be able to... ...explain how hash tables perform insertion in amortized $O(1)$ time given enough space

Reminder: Exam 2

- Topics: weeks 1-6
- Reading, programs, in-class, written assignments.
- Especially
- Algorithm analysis in general
- Binary trees, including BST, AVL, R/B, and threaded
- Traversals and iterators, size vs. height, rank
- Backtracking / Queens problem
- Questions on this or anything else courserelated?

Hashing

Efficiently putting 5 pounds of data in a 20 pound bag

Big picture: a map gives dictionary storage

- Map: insertion, retrieval, and deletion of items by key. Examples:
- Map<String, Integer> wordCounts;
- Map<Integer, Student> students;
- count = wordCounts.get("best");
- students.add(56423302, new Student(...))!
- Implementation choices:
- TreeMap uses a balanced tree
- TreeSet is a TreeMap with no values
- The BST assignment is an unbalanced TreeSet
- HashMap uses a hash table
- HashSet is a HashMap with no values

A hash table is a very fast approach to dictionary

 storage- Insertion and lookup are constant time!
- With a good "hash function"
- And large enough storage array
- Doesn't keep items ordered
- So NOT for sorted data

Direct Address Tables

direct access table

Array of size m

- n elements with unique keys
- If $\mathrm{n} \leq \mathrm{m}$, then use the key as an array index.
- Clearly O(1) lookup of keys
- Issues?
- Keys must be unique.
- Often the range of potential keys is much larger than the storage we want for an array
- Example: RHIT student IDs vs. \# Rose students

key \rightarrow hashCode0 \rightarrow integer

Objects that are .equals() MUST have the same hashCode values
A good hashCode() also is fast to calculate and distributes the keys, like:
hashCode("ate") 48594983
hashCode("ape")= 76849201
hashCode("awe") = 14893202

... and then take it mod the table size (m) to get an index into the array.

- Example: if $m=100$:
hashCode("ate")= 48594983 hashCode("ape")= 76849201 hashCode("awe") = 1489036

Index calculated from the object itself, not from 3-4 a comparison with other objects

- How Java's hashCode() is used:
"ate" \rightarrow hashCode0 $\rightarrow 48594983 \rightarrow$ mod
- Unless this position is already occupied
a "collision"
- Default if you inherit Object's: memory location
- Many JDK classes override hashCode()
- Integer: the value itself
- Double: XOR first 32 bits with last 32 bits
- String: we'll see shortly!
- Date, URL, ...
- Custom classes should override hashCode()
- Use a combination of final fields.
- If key is based on mutable field, then the hashcode will change and you will lose it!

A simple hash function for Strings is a function of every character
// This could be in the String class public static int hash(String s) \{ int total $=0$;
for (int i=0; i<s.length(); i++)
total $=$ total + s.charAt(i);
return Math.abs(total);
\}

- Advantages?
- Disadvantages?

A better hash function for Strings uses place value

// This could be in the String class public static int hash(String s) \{ int total = 0;
for (int i=0; i<s.length(); i++) total $=$ total*256 + s.charAt(i); return Math.abs(total);
\}

- Spreads out the values more, and anagrams not an issue.
- What about overflow during computation?
- What happens to first characters?

A better hash function for Strings uses place value with a base that's prime
// This could be in the String class public static int hash(String s) \{ int total $=0$;
for (int i=0; i<s.length(); i++)
total $=$ total*31 + s.charAt(i);
return Math.abs(total);
\}

- Spread out, anagrams OK, overflow OK.
- This is String's hashCode() method.
- The $(x=31 x+y)$ pattern is a good one to follow.

Collisions are inevitable

"ate" \rightarrow hashCode0
 $\rightarrow 48594983 \rightarrow$
 $\rightarrow 83$
 - A good hashcode distributes keys evenly, but collisions will still happen

- hashCode() are ints \rightarrow only ~ 4 billion unique values. - How many 16 character ASCII strings are possible?
- If n is small, tables should be much smaller - mod will cause collisions
- Solutions:
- Chaining
- Probing (Linear, Quadratic)

Separate chaining: an array of linked lists

Easy to code
Easy to deal with collisions

```
Examples: .get("at"), .get("him),
(hashcode=18), .add("him"), .delete("with")
```


Java's HashMap uses chaining and a table size that is a power of 2 .

Runtime of hashing with chaining depends on

 the load factorm array slots,

n items.
Load factor, $\lambda=n / m$.
Runtime $=O(\lambda)$
Space-time trade-off

1. If m constant, then $O(n)$
2. If keep $\mathrm{m} \sim 0.5 \mathrm{n}$ (by doubling), then amortized $\mathrm{O}(1)$

Alternative: Store collisions in other array slots.

- No memory required for pointers
- Historically, this was important!
- Will need to keep load factor $(\lambda=n / m)$ low or else collisions degrade performance
- The logic is slightly more complicated
- And uses some interesting math

Collision Resolution: Linear Probing

- Probe H (see if it causes a collision)
- Collision? Also probe the next available space:
- Try H, H+1, H+2, H+3, ...
- Wraparound at the end of the array
- Example on board: .add() and .get()
, Problem: Clustering
- Animation:
- http://www.cs.auckland.ac.nz/software/AlgAnim/has

hash $(89,10)$	$=9$
hash $(18,10)$	$=8$
hash $(49,10)$	$=9$
hash $(58,10)$	$=8$
hash $(9,10)$	$=9$

Figure 20.4 Linear probing hash table after each insertion

Good example of clustering and wraparound

After insert 89 After insert 18 After insert 49 After insert 58 After insert 9

49
58
9
18
89

Linear probing efficiency also depends on load factor, $\lambda=\mathrm{n} / \mathrm{m}$

- For probing to work, $0 \leq \lambda \leq 1$.
- For a given λ, what is the expected number of probes before an empty location is found?

Rough Analysis of Linear Probing

- Assume all locations are equally likely to be occupied, and equally likely to be the next one we look at.
- Then the probability that a given cell is full is λ and probability that a given cell is empty is $1-\lambda$.
- What's the expected number?

$$
\sum_{p=1}^{\infty} \lambda^{p-1}(1-\lambda) p=\frac{1}{1-\lambda}
$$

Better Analysis of Linear Probing

- Clustering!
- Blocks of occupied cells are formed
- Any collision in a block makes the block bigger
- Two sources of collisions:
- Identical hash values
- Hash values that hit a cluster
- Actual average number of probes for large λ :

$$
\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^{2}}\right)
$$

```
For a proof, see Knuth, The Art of Computer Programming, Vol 3:
Searching Sorting, 2nd ed, Addision-Wesley, Reading, MA, }1998
```


Why consider linear probing?

- Easy to implement
- Simple code has fast run time per probe
- Works well when load factor is low
- In practice, once $\lambda>0.5$, we usually double the size of the array and rehash
- This is more efficient than letting the load factor get high

To reduce clustering, probe farther apart

- Linear probing:
- Collision at H? Try H, H+1, H+2, H+3,...
- Quadratic probing:
- Collision at H? Try H, H+1 ${ }^{2}$. $\mathrm{H}+2^{2}, \mathrm{H}+3^{2}, \ldots$
- Eliminates primary clustering. "Secondary clustering" isn't as problematic

Quadratic Probing works best with low λ and

- Choose a prime number for the array size, m
- Then if $\lambda \leq 0.5$:
- Guaranteed insertion
- If there is a "hole", we'll find it
- No cell is probed twice

For a proof, see Theorem 20.4:
Suppose that we repeat a probe before trying more than half the slots in the table
See that this leads to a contradiction
Contradicts fact that the table size is prime

Quadratic Probing runs quickly if we implement it correctly

- Use an algebraic trick to calculate next index
- Difference between successive probes yields:
- Probe i location, $\mathrm{H}_{\mathrm{i}}=\left(\mathrm{H}_{\mathrm{i}-1}+2 \mathrm{i}-1\right) \% \mathrm{M}$

1. Just use bit shift to multiply i by 2

- probeLoc= probeLoc $+(i \ll 1)-1$;
...faster than multiplication

2. Since i is at most $M / 2$, can just check:

- if (probeLoc $>=M$)

$$
\text { probeLoc }-=\mathrm{M} \text {; }
$$

...faster than mod

Quadratic probing analysis

- No one has been able to analyze it!
- Experimental data shows that it works well
- Provided that the array size is prime, and $\lambda<0.5$
- If you are interested, you can do the optional HashSet exercise.
- http://www.rose-hulman.edu/class/csse/csse230/201430/InClassExercises/
- This week's homework takes a couple questions from there.

Summary:

Hash tables are fast for some operations

Structure	insert	Find value	Find max value
Unsorted array			
Sorted array			
Bal BST			
Hash table			

- Finish the quiz.
- Then check your answers with the next slide
- Then you have worktime

Answers:

Structure	insert	Find value	Find max value
Unsorted array	Amortized $\theta(1)$	$\theta(\mathrm{n})$	$\theta(\mathrm{n})$
Sorted array	$\theta(\mathrm{n})$	$\theta(\log \mathrm{n})$	$\theta(1)$
Bal BST	$\theta(\log \mathrm{n})$	$\theta(\log \mathrm{n})$	$\theta(\log \mathrm{n})$
Hash table	Amortized $\theta(1)$	Amortized $\theta(1)$	$\theta(\mathrm{n})$

