
Red-black trees

After today, you should be able to…
…determine if a tree is a valid red/black tree
…perform top-down insertion in a red/black tree

Red-black trees

BST with Log(n) runtime guarantee using only two crayons?

Inspired by pre-schoolers?

 Milestone 1 is graded on unit tests only.

 But…be sure to fix efficiency issues for the future
◦ See final notes in specification
◦ Cannot recalculate size or height after rotation: these

are O(n) operations.
◦ You can recalculate rank and balance codes: these are

O(1) computations per node.
 Update rank on the way down the tree.

 Update balance codes and do rotations on the way up.

 So each is O(log n) total

 Know when you can stop! (day 14 slides have the algorithm
for insertion, you’ll have to think about deletion)

 Format same as Exam 1
◦ One 8.5x11 sheet of paper (one side) for written part

◦ Same resources as before for programming part

 Topics: weeks 1-6
◦ Reading, programs, in-class, written assignments.

◦ Especially

 Using various data structures
(lists, stacks, queues, sets, maps, priority queues)

 Binary trees, including BST, AVL, R/B, and threaded

 Traversals and iterators, size vs. height, rank

 Algorithm analysis in general

 Through day 19, WA6, and
EditorTrees milestone 2

Sample exam on Moodle
has some good questions
(and extras we haven’t
done, like sorting)
Best practice: assignments.

T
F
IDK

1. It is a BST
2. Every node is either colored red or black.
3. The root is black.
4. No two successive nodes are red.
5. Every path from the root to a null node has the

same number of black nodes (“perfect black
balance”)

1

Runtime is O(height)

Best-case: if all nodes black, it is ~log n.

Worst case: every other node on the longest
path is red. Height ~2 log n.

 Like BST:
◦ Insert at leaf
◦ Color it red (to keep perfect black balance)

 But could make two reds in a row?
◦ On the recursive travel back up the tree (like AVL),
◦ rotate (single- and double-, like AVL)
◦ and recolor (new)

 Show that three recolor-rotations fix two reds in
a row while maintaining black balance.

 At end, always make root black.

2

Copyright © 2010 Pearson Education

2

Copyright © 2010 Pearson Education

2

Copyright © 2010 Pearson Education

2

 Bottom-Up insertion strategy must be
recursive.

 Solution:
 On the way down the tree to the insertion

point, if ever see a black node with two red
children, swap the colors.

2

Situation: A black node with two red children.

Action: - Recolor the node red and the
children black.

- If the parent is red, perform rotations,
otherwise continue down the tree

Does this change black balance? No.

X

Y Z

X

ZY

 On the way down the tree to the insertion point,
if ever see a black node with two red children,
swap the colors.

 The rotations are done while traversing down the
tree to the insertion point.
◦ If see black node with 2 red children on way down, make

parent red and children black.
◦ Avoid rotating into case (c) (2 red siblings) altogether.

 Top-Down insertion can be done with loops
without recursion or parent pointers, so is
slightly faster.

2

 Rotate when an insertion or color flip
produces two successive red nodes.

 Just like those for AVL trees:
◦ If the two red nodes are both left children or both

right children, perform a single rotation.
◦ Otherwise, perform a double rotation.

 Except we recolor nodes instead of adjusting
their heights.

1. Insert: 1, 2, 3, 4, 5, 6, 7, 8

2. Insert: 7, 6, 5, 4, 3, 2, 1, 1
◦ Relationship with (1)?

◦ Duplicates not inserted.

3. Insert: 10, 85, 15, 70, 20, 60, 30, 50, 65,
80, 90, 40, 5, 55

4. Use applet to check your work.

3

 Java uses:

 Slightly faster than AVL
trees

 What’s the catch?
◦ Need to maintain pointers

to lots of nodes (child,
parent, grandparent, great-
grandparent, great-great-
grandparent)

◦ The deletion algorithm is
nasty.

