
AVL trees and rotations

/

This week, you should be able to…
…perform rotations on height-balanced trees, 

on paper and in code
… write a rotate() method
… search for the kth item in-order using rank 



 See schedule page



 Consider an arbitrary method named foo()

foo()
If base case, return the appropriate value
◦ 1. Compute a value for the node
◦ 2. Call left.foo() 
◦ 3. Call right.foo()
◦ Combine the results and return them

 This is O(n) if the computation on the node is constant-time

 When searching in a BST, you only need to recurse left or 
right, so it is O(height)

If you submitted HW4, you will receive a solution in your repo. 
Look at it before Monday.



 Total time to do insert/delete = 
◦ Time to find the correct place to insert = O(height)
◦ + time to detect an imbalance
◦ + time to correct the imbalance

 If don’t bother with balance: 

 If try to keep perfect balance: 
◦ Height is O(log n) BUT …
◦ But maintaining perfect balance is O(n)

 Height-balanced trees are still O(log n)
◦ For T with height h, N(T) ≤ Fib(h+3) – 1
◦ So H < 1.44 log (N+2) – 1.328 *

 AVL (Adelson-Velskii and Landis) trees maintain 
height-balance using rotations

 Are rotations O(log n)? We’ll see…

Q1



Different representations for / = \ :
 Just two bits in a low-level language

 Enum in a higher-level language

or/ = \or

Q2



 Assume tree is height-balanced before 
insertion

 Insert as usual for a BST

 Move up from the newly inserted node 
to the lowest “unbalanced” node (if any)
◦ Use the balance code to detect unbalance -

how?

◦ Why is this O(log n)?

 We move up the tree to the root in worst case, 
NOT recursing into subtrees to calculate heights

 Do an appropriate rotation (see next 
slides) to balance the sub-tree rooted at 
this unbalanced node

/

Q3



 For example, a single left rotation:



 Two basic cases
◦ “See saw” case: 

 Too-tall sub-tree is on the outside

 So tip the see saw so it’s level

◦ “Suck in your gut” case:

 Too-tall sub-tree is in the middle

 Pull its root up a level



Diagrams are from Data Structures by E.M. Reingold and W.J. Hansen

Unbalanced node

Middle sub-tree 
attaches to lower node 

of the “see saw”

Q4-5



Weiss calls this “right-left double rotation”

Unbalanced node

Pulled up
Split between the 

nodes pushed down

Q6-7



 Write the method:
 static BalancedBinaryNode singleRotateLeft (

BalancedBinaryNode parent,   /* A */   
BalancedBinaryNode child     /* B */  ) {

}
 Returns a reference to the new root of this subtree.
 Don’t forget to set the balanceCode fields of the nodes.

Q8



 Write the method:
 BalancedBinaryNode doubleRotateRight (

BalancedBinaryNode parent,     /* A */   

BalancedBinaryNode child,      /* C */  

BalancedBinaryNode grandChild /* B */ ) {

}

 Returns a reference to the new root of this subtree.

 Rotation is mirror image of double rotation from an 
earlier slide



 If you have to rotate after insertion, you can 
stop moving up the tree:
◦ Both kinds of rotation leave height the same as 

before the insertion!

 Is insertion plus rotation cost really O(log N)?

Q9,Q1,Q10-11

Insertion/deletion 
in AVL Tree: O(log n)

Find the imbalance point (if any): O(log n)

Single or double rotation: O(1)

(looking ahead) for deletion, may have
to do O(log N) rotations

Total work: O(log n)



Like BST, except:

1. Keep height-balanced
2. Insertion/deletion by index, not by comparing elements. So 

not sorted



 EditorTree et = new EditorTree()
 et.add(‘a’)  // append to end
 et.add(‘b’) // same
 et.add(‘c’) // same. Rebalance!
 et.add(‘d’, 2) // where does it go?
 et.add(‘e’)
 et.add(‘f’, 3)

 Notice the tree is height-balanced (so height 
= O(log n) ), but not a BST



 Gives the in-order position of this node 
within its own subtree
◦ i.e., the size of its left subtree

 How would we do findK
th

?

 Insert and delete start similarly

0-based 
indexing





Read the specification and check 
out the starting code

Milestone 1 due soon. 
Coordinate Fall break as a team

Get started before next class!


