
Binary Tree Iterators

After today, you should be able to…
… implement _lazy_ iterators for trees
… implement insertion into a BST 

0



 Exam 1 – Day 11: but when and where?
◦ Coverage:

 Everything from reading and lectures, Sessions 1-10 

 Programs through BinaryTrees

 Homeworks 1-3

◦ Allowed resources:
 Written part: ½ of one side of 8.5 x 11 paper

 Goal: to force you to summarize.

 Programming part:
 Textbook

 Eclipse (including programs you wrote in your repos)

 Course web pages and materials on Moodle

 Java API documentation

 A previous 230 Exam 1 is available in Moodle

1



 Binary Tree Iterators

◦ Especially (yawn) lazy ones

 BinarySearchTree (BST) insertion



What if we want to iterate over 
the elements in the nodes of the 
tree one-at-a-time instead of 
just printing all of them?



 Consider a tree with 1 million elements.

 What is the runtime of iterating over only the 
first 100 elements?

 (example on board)

 To improve efficiency, the iterator should 
only get as few elements as possible
◦ The one time where being lazy has a reward!



 What are they?

 How would you make a lazy pre-order
iterator? (brainstorm an algorithm now)

 What do you need to add to create the other 
recursive iterators?

 What about the last iterator?
◦ A quick change. Magic? Not really…



Otherwise, you’ll use a loop. Examples:

 Lazy iterators (today): 
◦ use a stack too.

 AVL trees (week 4-5): 
◦ use pointer to parents to move up tree and 

“rebalance”

 Threaded trees (HW5 and 6): 
◦ use pointer to next and 

previous in-order nodes



Aim to complete at least Milestone 1 
of BinarySearchTrees by next class

We’ll start next topic during last 20 
min of class



 How does one insert into a BST?

 Rules:
◦ Assume you have a BST
◦ All elements are Comparable
◦ There is only one place to insert the element while 

keeping the tree a BST
◦ Duplicate elements not allowed 

(we are implementing TreeSet)

 More on BSTs next class


