
More BinaryTree methods
Tree Traversals and Iterators

Q1

After today, you should be able to…
… traverse trees on paper & in code
… implement a simple iterator for trees

4 possibilities for children (leaf,
Left only, Right only, Both)

1 possibility for children: Both
(which could be NULL_NODE)

NULL

Simpler

Simpler

Comment out unused tests and
uncomment as you go

Write containsNonBST(T item)

now.

}  If (node is null)
◦  Return something

simple

}  Recurse to the left
}  Recurse to the right
}  Combine results

with this node

}  If (node is null)
◦  Return something

simple

}  Recurse to the left
}  Recurse to the right
}  Combine results

with this node

}  If (node is null)
◦  Return something

simple

}  Recurse to the left
}  Recurse to the right
}  Combine results

with this node

}  If (node is null)
◦  Return something

simple

}  Recurse to the left
}  Recurse to the right
}  Combine results

with this node

}  Print the tree
contents

}  Sum the values of
the nodes

}  Dump the contents
to an array list

}  Lots more

}  PreOrder (top-down, depth-first)
◦  root, left, right

}  PostOrder (bottom-up)
◦  left, right, root

}  InOrder (left-to-right, if tree is spread out)
◦  Left, root, right

}  LevelOrder (breadth-first)
◦  Level-by-level, left-to-right within each level

2-6

If the tree
has N
nodes,
what’s the
(worst-
case)  
big-Oh
run-time
of each
traversal?

Otherwise, you’ll use a loop. Examples:

}  Lazy iterators (next class):
◦  use a stack too.

}  AVL trees (week 4):
◦  use pointer to parents to move up tree and

“rebalance”
}  Threaded trees (HW5 and 6):
◦  use pointer to next in-order nodes

}  In Java, specified by java.util.Iterator<E>

What if we want to iterate over
the elements in the nodes of the
tree one-at-a-time instead of
just printing all of them?

Q7-9

