

After today, you should be able to... ...use tree terminology ...write recursive tree functions

Checkout BinarySearchTree from SVN

Pay careful attention to the ACM Code of Ethics essay

- Part of Homework 3
 - Examine the Code of Ethics of the ACM
 - Focus on property rights
 - Write a reaction (1 page single-spaced)
 - Details are in the assignment
- This is part of the context of your work this term.

Thoughts on Teaming

Two Key Rules

- No prima donnas
 - Working way ahead, finishing on your own, or changing the team's work without discussion:
 - harms the education of your teammates
- No laggards
 - Coasting by on your team's work:
 - harms your education
- Both extremes
 - are selfish
 - may result in a failing grade for you on the project

Grading of Team Projects

- I'll assign an overall grade to the project
- Grades of individuals will be adjusted up or down based on team members' assessments
- At the end of the project each of you will:
 - Rate each member of the team, including yourself
 - Write a short Performance Evaluation of each team member with evidence that backs up the rating
 - Positives
 - Key negatives

Ratings

- Excellent—Consistently went above and beyond: tutored teammates, carried more than his/her fair share of the load
- Very good—Consistently did what he/she was supposed to do, very well prepared and cooperative
- Satisfactory—Usually did what he/she was supposed to do, acceptably prepared and cooperative
- Ordinary—Often did what he/she was supposed to do, minimally prepared and cooperative
- Marginal—Sometimes failed to show up or complete tasks, rarely prepared

Deficient—Often failed to show up or complete tasks, rarely prepared

- Unsatisfactory—Consistently failed to show up or complete tasks, unprepared
- Superficial—Practically no participation

No show—No participation at all

Got the **Big Picture**?

- Now: an implementation that is more efficient and more complex to code than arrays...
- ... Trees!

Trees

Introduction and terminology

Trees in everyday (geek) life

Class hierarchy tree (single inheritance only)
Directory tree in a file system

A General Tree—Global View

- A collection of nodes
- Nodes are connected by directed edges.
 - One special root node has no incoming edges
 - All other nodes have exactly one incoming edge

С

G

D

Н

Ε

One way that Computer Scientists are odd is that our trees usually have their root at the top!

Tree Terminology

- Parent
- Child
- Grandparent
- Sibling
- Ancestors and descendants
- Proper ancestors, proper descendants
- Subtree
- Leaf, interior node
- Depth and height of a node
- Height of a tree

Node height and depth examples

F

figure 18.1

A tree, with height and depth information

The height of a tree is the height of its root node.

Which is larger, the sum of the heights or the sum of the depths of all nodes in a tree?

B ((G	c			E	J
		Node	Height	Depth		•
		Α	3	0		(\mathbf{r})
		В	1	1		K
		С	0	1		
		D	1	1		
		E	2	1		
		F	0	2		
		G	0	2		
he		Н	0	2		
~~		1	0	2		
e		J	1	2		
		K	0	3		

Binary Tree: Recursive definition

- A Binary Tree is either
 - **empty**, or
 - consists of:
 - a distinguished node called the root, which contains an element, and
 - A left subtree T_L , which is a binary tree
 - A right subtree T_R, which is a binary tree

Binary Search Trees (BST)

What property enables us to search BSTs efficiently?

Growing Trees

Let's start the BinarySearchTrees assignment: implement a BinaryTree<T> class

Test tree:

