
Maximum Contiguous Subsequence Sum

Q0, 1

After today’s class you will be able to:
 provide an example where an insightful algorithm can be much

more efficient than a naive one.

Q1

}  Is MCSS θ(n2)?
◦  Showing that a problem is Ω (g(n)) is much tougher. How do

you prove that it is impossible to solve a problem more
quickly than you already can?

◦  Can we find a yet faster algorithm?

A linear algorithm.  
 
{-3, 4, 2, 1, -8, -6, 4, 5, -2}

}  Consider {-3, 4, 2, 1, -8, -6, 4, 5, -2}

}  Any subsequences you can safely ignore?
◦  Discuss with another student (2 minutes)  

Q2

}  We noted that a max-sum sequence Ai,j
cannot begin with a negative number.

}  Generalizing this, it cannot begin with a
prefix Ai,k with k<j whose sum is negative.
◦  Proof by contradiction. Suppose that Ai,j is a max-

sum sequence and that Si,k is negative. In that case,
a larger max-sum sequence can be created by
removing Ai,k However, this violates our assumption
that Ai,j is the largest max-sum sequence.

Q3

}  All contiguous subsequences that border the
maximum contiguous subsequence must
have negative or zero sums.
◦  Proof by contradiction. Consider a contiguous

subsequence that borders a maximum contiguous
subsequence. Suppose it has a positive sum. We can
then create a larger max-sum sequence by
combining both sequences. This contradicts our
assumption of having found a max-sum sequence.

Q4

}  No max-sum sequence can start from inside a
subsequences that has a negative sum and extend
beyond it.

}  In other words, if we find that Si,j is negative, we
can skip all sums that begin with any of Ai, Ai+1,
…, Aj.

}  We can “skip i ahead” to be j+1.

becomes < 0

i j

becomes < 0

i j q p p-1

becomes < 0

i j q p p-1

Si,j is negative. So,
skip ahead per
Observation 3

Running time is is O (?)
How do we know?

Q5, Q6

}  MCSS is O(n)!
}  Is MCSS Ω(n) and thus θ(n)?
◦  Yes, intuitively: we must at least examine all n elements

}  From SVN, checkout MCSSRaces

}  Study code in MCSS.main()

}  For each algorithm, how large a sequence can
you process on your machine in less than 1
second?

}  The first algorithm we think of may be a lot
worse than the best one for a problem

}  Sometimes we need clever ideas to improve it

}  Showing that the faster code is correct can
require some serious thinking

}  Programming is more about careful
consideration than fast typing!

Q11-12

}  If GM had kept up with technology like the
computer industry has, we would all be driving
$25 cars that got 1000 miles to the gallon.  

 - Bill Gates

}  If the automobile had followed the same
development cycle as the computer, a Rolls-
Royce would today cost $100, get a million miles
per gallon, and explode once a year, killing
everyone inside.  

 - Robert X. Cringely

A preview of Abstract Data Types
and Java Collections

This week’s major program

An exercise in implementing your own
growable circular Queue:
1.  Grow it as needed (like day 1 exercise)
2.  Wrap-around the array indices for more

efficient dequeuing

Discuss Stacks as a warmup (push, pop), then
ideas for Queues (enqueue, dequeue)

Analyze implementation choices for Queues –
much more interesting than stacks!

Q7-8

An exercise in writing cool algorithms that
evaluate mathematical expressions:

 Infix: 6 + 7 * 8
 Postfix: 6 7 8 * +

Both using stacks.

Q9

}  Plan when you'll be working
}  Review the pair programming video as

needed
}  Check out the code and read the specification

together

