Tie Day #1. Log your
bonus points in Moodle

CSSE 230 Day 3

Maximum Contiguous Subsequence Sum

After today’s class you will be able to:

state and solve the MCSS problem on small arrays by observation
find the exact runtimes of the naive MCSS algorithms

https://openclipart.org/image/2400px/svg_to_png/169467/bow_tie.png

Limits and Asymptotics

» Consider the limit _ f(r
fim

N—> 00 g(n)

» What does it say about asymptotic relationship
between f and g if this limitis...
> 07
> finite and non-zero?
> infinite?

Q12, day 2

Apply this limit property to the
following pairs of functions

1. n and n?

2. log n and n (on these questions and solutions
ONLY, let log n mean natural log)

3. n log n and n?

4. log,n and logyn (a < b)
s.nfanda” (@ > 1)

6

~a" and b" (a < b) [Recall ’'Hépital’s rule:
under appropriate conditions,

lim M = lim f'(n)
woe g(n) noeo g'(n)

Q13-15

Why do we look at this problem?

» It’s interesting
» Analyzing the obvious solution is instructive

» We can make the program more efficient

A Nice Algorithm Analysis Example

» Problem: Given a sequence of numbers, find
the maximum sum of a contiguous
subsequence.

» Consider:
- What if all the numbers were positive?
- What if they all were negative?
- What if we left out “contiguous’?

Formal Definition: Maximum
Contiguous Subsequence Sum

Problem definition: Given a non-empty
sequence of n (possibly negative) integers
Ay, Ao, ..., A, find the maximum consecutive
subsequence §; ; = Ll. A, and the
corresponding values of i and j.

» Quiz questions:
> In{-2,11,-4,13,-5,2}S,, =7
- In{1, -3, 4, -2, -1, 6}, what is MCSS?
- If every element is negative, what’s the MCSS?

1-based indexing. We’ll use

when analyzing b/c easier

Q2-4

Write a simple correct algorithm Q>
now

> Must be easy to explain
- Efficiency doesn’t matter.
> 3 minutes

» Examples to consider:
° {_31 41 21]1 _8! _61 41 51 _2}
0{5161 _3121 8! 4! _]21 71 2}

First Algorithm Find the sums of
all subsequences

public final class MaxSubTest ({
private static int seqgStart = 0;
private static int seqgEnd = 0;
/* First maximum contiguous subsequence sum algorithm.
* segStart and segkEnd represent the actual best sequence.

=/
public static int maxSubSuml(int [] a) {
i: beginning of | int maxSum = 0; Where
subseduence wiaualysis we use "n" as a shorthand for "a length - -
d for(Int i = 0; i < a.length; i++) " will this

- for(int,j = i; j < a.length; j++) { |algorithm
J: end of — int thisSum = 0; g
subsequence spend the

for(int k = 1; k <= j; k++) mOSt
k: steps through /Eﬁs'sle 4= al k]} - C—

| time?
each element of if(thisSum > maxSum) {
subsequence maxSum = thisSum;
segStart = 1i; _
seqEnd = j; How many times
) (exactly, as a function of
} statement execute?

Analysis of this Algorithm

» What statement is executed the most often?

» How many times?

» How many triples, (1,3,k) with 1<1<k<j<n ?

//In the analysis we use "n" as a shorthand for "a.length "
for(int 1 = 0; 1 < a.length; i++)
for(int J = 1; jJ < a.length; J++)
int thisSum = 0;

for{(int k = 1i; k <= 3; k++)
thisSum += a[k];

Outer numbers could be O and n - 1,

and we'd still get the same answer.

{

How to find the exact sum

» By hand

» Using Maple

Q6, Q7
Counting is (surprisingly) hard!

» How many triples, (1,3,k) with 1<1<k<j<n?

» What is that as a summation?
- Can also just get from code

n“’fn-f,i‘ AR
NTTNTTNT]

& & &
il | i | —

=1\ j=i \ k=i J)

» Let’s solve it by hand to practice with sums

Simplify the sum

1 4 ¥ -“"j
i | i |
i=1 A\ j=i \ k=i

» When it gets down to “just Algebra”, Maple is
our friend

Help from Maple, part 1

Sumphityving the last step ot the monster sum
> simplify((n"2+3*n+2) /2*n
-(n+3/2)*n* (n+l) /2+1/2*n* (n+l1) * (2*n+1) /6) ;
l”3+l”l+l”
6 2 3
> factor (%) ;
1

—(n+2)n(n+1)
6

Help from Maple, part 2

Letting Maple do the whole thing for us:
sum(sum(sum(l, k=1i..73), J=1i..n), 1=1..n);
1 1 S 1

—(n+ Dy +2m+Dn+-—n+———n(n+1)°—(n+1)°
2 ’ | 3 6 2 ’ ’

1 1

, 3 y
+—(n+1)y ——n
GL ; -

> factor (simplify (%)) ;

1
—(n+2)n(n+1)
6

We get same answer if we sum from 0
to n-1, instead of 1 to n

factor(simplifv(sum{sum(sum{(l k=i. .3}, J=i..n},
i=1. .n})));

Rin+21(n+1)
&

factor(simplifv(sum{sum{(sum{(l k=i..j},J=1. .n-1},
i=0. . n-1})));

Rin+21(n+1)
&

Interlude

» Computer Science is no more about
computers than astronomy is about

Donald Knuth

Interlude

» Computer Science is no more about
computers than astronomy is about
telescopes.

Donald Knuth

Fun tangent

Observe that 2HD+2) _ (n _3|_ 2),

from basic counting/probability

» The textbook makes use of this in a curious
way to find the sum more easily. Fun, but not
required for class.

Where do we stand?

» We showed MCSS is O(n3).

- Showing that a problem is O(g(n)) is relatively easy - just
analyze a known algorithm.

» Is MCSS Q(n3)?

- Showing that a problem is Q (g(n)) is much tougher. How do
you prove that it is impossible to solve a problem more
quickly than you already can?

f(n) is O(g(n)) if f(n) < cg(n) for all n = n,
o Or maybe we can find |- so0 gives an upper bound
a faster algorithm? f(n) is Q(g(n)) if f(n) = cg(n) for all n = n,
> So Q gives a lower bound
f(n) is 6(g(n)) if c;g(n) < f(n) < c,g(n) forall n = n,
> So 0 gives a tight bound
> f(n) is 6(g(n)) if it is both O(g(n)) and Q(g(n))

What is the main source of the simple
algorithm’s inefficiency?

//In the analysis we use "n" as a shorthand for "a.length "
for{({ int 1 = 0; 1 <€ a.length; i++)
for(int 3 = 1i; j < a.length; j++) {
int thisSum = 0;

for(int k = 1; k <= j; k++)
thisSum += a[k];

» The performance is bad!

Eliminate the most obvious
inefficiency...

for{ int 1 = 0; 1 < a.length; i++) {
int thissS5um = 0;
for{ int J =1i; 37 < a.length; jJ++) {
this5um += a[3]1:;

1f{ this5um > maxSum)} {
maxsSum = thisS5um;
segstart 1;
seqgbEnd 1

_— This is ©(?)

MCSS is O(n?)

» Is MCSS Q(n?)?

> Showing that a problem is Q (g(n)) is much tougher. How do
you prove that it is impossible to solve a problem more
quickly than you already can?

- Can we find a yet faster algorithm?

f(n) is O(g(n)) if f(n) < cg(n) for all n = n,

> So O gives an upper bound

f(n) is Q(g(n)) if f(n) = cg(n) for all n = n,

> So Q gives a lower bound

f(n) is 6(g(n)) if c;g(n) < f(n) < c,g(n) forall n = n,
> So 0 gives a tight bound

> f(n) is 6(g(n)) if it is both O(g(n)) and Q(g(n))

http://www.etsu.edu/math/gardner/batman

