
Growable Arrays Continued
Big-Oh and its cousins

Answer Q1 from today's in-class quiz.

}  Finish course intro
}  Growable Array recap
}  Big-Oh and cousins

}  After today, you’ll be able to
◦  Use the term amortized appropriately in analysis
◦  explain the meaning of big-Oh, big-Omega (Ω), and

big-Theta (θ)
◦  apply the definition of big-Oh to prove runtimes of

functions
◦  use limits to show that a function is O, θ, or Ω of

another function.

}  You will not usually need the textbook in
class

}  Late days?

}  Test policy: Individual competence
requirement

}  See syllabus for exam weighting and caveats.

}  Think of every program you write as a
practice test
◦  Especially HW4 and test 2a

◦  Short but intense! ~45 lines of code total in our
solutions to all but Adder

◦  Be sure to read the description of how it will be
graded. Note how style will be graded.

◦  Demo: Running the JUnit tests for test, file,
package, and project 
 
Demo: Run the Adder program

}  About Homework 1?
◦  Aim to complete tonight, since it is due after next

class
◦  It is substantial (in amount of work, and in course

credit)
}  About the Syllabus?

Q2-3

Daring to double

200

}  Doubling each time:
◦  Assume that N = 5 (2k) + 1.

}  Total # of array elements copied:
k N #copies
0 6 5
1 11 5 + 10 = 15
2 21 5 + 10 + 20 = 35
3 41 5 + 10 + 20 + 40 = 75
4 81 5 + 10 + 20 + 40 + 80 = 155
k = 5 (2k) + 1 5(1 + 2 + 4 + 8 + … + 2k)

Express as a closed-form expression in
terms of K, then express in terms of N

}  Total # of array elements copied:

N #copies
6 5
7 5 + 6
8 5 + 6 + 7
9 5 + 6 + 7 + 8
10 5 + 6 + 7 + 8 + 9
N ???

Express as a closed-form
expression in terms of N

}  What’s the average overhead cost of adding
an additional string…
◦  in the doubling case?
◦  in the add-one case?

}  So which should we use?

Q4-5

This is called
the amortized
cost

Q6

x

Simplify: Note that log n (without a specified) base means log2n.
Also, log n is an abbreviation for log(n).

1.  log (2 n log n)

2.  log(n/2)

3.  log (sqrt (n))

4.  log (log (sqrt(n)))

5.  log4 n

6.  22 log n

7.  if n=23k - 1, solve for k.

Where do logs come from in algorithm analysis?

}  Algorithms may have different time
complexity on different data sets

}  What do we mean by "Worst Case"?
}  What do we mean by "Average Case"?
}  What are some application domains where

knowing the Worst Case time complexity
would be important?

}  http://cacm.acm.org/magazines/2013/2/160173-the-tail-
at-scale/fulltext

Worst-case:
O(n)

amortized:
O(1)

Big-Oh
Big-Omega
Big-Theta

}  We only care what happens when N gets large

}  Is the function linear? quadratic?
exponential?

Figure 5.1
Running times for small inputs	

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

(linear looks
constant for
small inputs)

Figure 5.2
Running times for moderate inputs	

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 5.3
Functions in order of increasing growth rate	

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

a.k.a "log linear"

The answer to most big-
Oh questions is one of
these functions

}  Drop lower order terms and constant factors

}  7n – 3 is O(n)

}  8n2logn + 5n2 + n is O(n2logn)

≥

Q7a

C > 0, n0 ≥ 0 and an integer

}  A function f(n) is (in) O(g(n)) if there exist two
positive constants c and n0 such that for all n≥ n0,
f(n) ≤ c g(n)

}  So all we must do to prove that f(n) is O(g(n)) is
produce two such constants.

}  f(n) = 4n + 15, g(n) = ???.
}  f(n) = n + sin(n), g(n) = ???

Assume that all functions have non-negative
values, and that we only care about n≥0. For
any function g(n), O(g(n)) is a set of functions.

Q8-9

}  f(n) is O(g(n)) if f(n) ≤ cg(n) for all n ≥ n0
◦  So big-Oh (O) gives an upper bound

}  f(n) is Ω(g(n)) if f(n) ≥ cg(n) for all n ≥ n0
◦  So big-omega (Ω) gives a lower bound

}  f(n) is θ(g(n)) if it is both O(g(n) and Ω(g(n))
 Or equivalently:

}  f(n) is θ(g(n)) if c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0
◦  So big-theta (θ) gives a tight bound

We usually show algorithms (in code) are θ(g(n)). Next class, we’ll also
discuss how to show problems are θ(g(n)).

}  True or false: 3n+2 is O(n3)
}  True or false: 3n+2 is Θ(n3)

Q7b,c, 10

}  Give tightest bound you can
◦  Saying 3n+2 is O(n3) is true, but not as useful as

saying it’s O(n)
◦  On a test, we’ll ask for Θ to be clear.

}  Simplify:
◦  You could also say: 3n+2 is O(5n-3log(n) + 17)
◦  And it would be technically correct…
◦  It would also be poor taste … and your grade will

reflect that.

}  Suppose T1(N) is O(f(N)) and T2(N) is O(f(N)).
Prove that T1(N) + T2(N) is O(f(N))

}  Hint: Constants c1 and c2 must exist for
T1(N) and T2(N) to be O(f(N))
◦  How can you use them?

}  Try it before next class

}  There are times when one might choose a
higher-order algorithm over a lower-order
one.

}  Brainstorm some ideas to share with the class

C.A.R. Hoare, inventor of quicksort, wrote:
Premature optimization is the root of all evil.

Q11

}  Consider the limit 
 
 
 

}  What does it say about asymptotic relationship
between f and g if this limit is…
◦  0?
◦  finite and non-zero?
◦  infinite?

)(
)(lim ng
nf

n ∞→

Q12

1. n and n2

on these questions and solutions ONLY, let log n mean natural log
2.  log n and n
3.  n log n and n2

4.  logan and logbn (a < b)
5.  na and an (a > 1)
6.  an and bn (a < b) Recall l’Hôpital’s rule:  

under appropriate conditions,

Q13-15

