CSSE 230 Day 2

Growable Arrays Continued Big-Oh and its cousins

Answer Q1 from today's in-class quiz.

Agenda and goals

- Finish course intro
- Growable Array recap
- Big-Oh and cousins
- After today, you'll be able to
- Use the term amortized appropriately in analysis
- explain the meaning of big-Oh, big-Omega (Ω), and big-Theta (θ)
- apply the definition of big-Oh to prove runtimes of functions
- use limits to show that a function is O, θ, or Ω of another function.

Announcements and FAQ

- You will not usually need the textbook in class
- Late days?
- Test policy: Individual competence requirement

You must demonstrate programming competence on exams to succeed

- See syllabus for exam weighting and caveats.
- Think of every program you write as a practice test
- Especially HW4 and test 2a

Warm Up and Stretching thoughts

- Short but intense! ~ 45 lines of code total in our solutions to all but Adder
- Be sure to read the description of how it will be graded. Note how style will be graded.
- Demo: Running the JUnit tests for test, file, package, and project

Demo: Run the Adder program

Questions?

- About Homework 1?
- Aim to complete tonight, since it is due after next class
- It is substantial (in amount of work, and in course credit)
- About the Syllabus?
Q2-3

Growable Arrays Exercise
 Daring to double

Growable Arrays Table

\mathbf{N}	$\mathbf{E}_{\mathbf{N}}$	Answers for problem 2
4	0	0
5	0	0
6	5	5
7	5	$5+6=11$
10	5	$5+6+7+8+9=35$
11	$5+10=15$	$5+6+7+8+9+10=45$
20	15	$\operatorname{sum}(\mathrm{i}, \mathrm{i}=5 . .20)=200$
21	$5+10+20=35$	$\operatorname{sum}(\mathrm{i}, \mathrm{i}=5 . .39)=770$
40	35	$\operatorname{sum}(\mathrm{i}, \mathrm{i}=5 . .40)=810$
41	$5+10+20+40=75$	

Doubling the Size

- Doubling each time:
- Assume that $\mathrm{N}=5\left(2^{\mathrm{k}}\right)+1$.
- Total \# of array elements copied:

k	N	\#copies
0	6	5
1	11	$5+10=15$
2	21	$5+10+20=35$
3	41	$5+10+20+40=75$
4	81	$5+10+20+40+80=155$
k	$=5\left(2^{\mathrm{k}}\right)+1$	$5\left(1+2+4+8+\ldots+2^{\mathrm{k}}\right)$

[^0]
Adding One Each Time

- Total \# of array elements copied:

Conclusions

- What's the average overhead cost of adding an additional string...
- in the doubling case?
- in the add-one case?

This is called the amortized cost

- So which should we use?

More math review

Review these as needed

- Logarithms and Exponents
- properties of logarithms:

$$
\begin{aligned}
& \log _{b}(x y)=\log _{b} x+\log _{b} y \\
& \log _{b}(x / y)=\log _{b} x-\log _{b} y \\
& \log _{b} x^{\alpha}=\alpha \log _{b} x \\
& \log _{b} x=\frac{\log _{a} x}{\log _{a} b}
\end{aligned}
$$

- properties of exponentials:

$$
\begin{aligned}
& \mathrm{a}^{(\mathrm{b}+\mathrm{c})}=\mathrm{a}^{\mathrm{b}} \mathrm{a}^{\mathrm{c}} \\
& \mathrm{a}^{\mathrm{bc}}=\left(\mathrm{a}^{\mathrm{b}}\right)^{\mathrm{c}} \\
& \mathrm{a}^{\mathrm{b} / \mathrm{a}^{\mathrm{c}}=\mathrm{a}^{(\mathrm{b}-\mathrm{c})}} \\
& \mathrm{b}=\mathrm{a}^{\log _{\mathrm{a}} \mathrm{~b}} \\
& \mathrm{~b}^{\mathrm{c}=\mathrm{a}^{\mathrm{c}^{*} \log _{\mathrm{a}} \mathrm{~b}}}
\end{aligned}
$$

Practice with exponentials and logs

(Do these with a friend after class, not to turn in)
Simplify: Note that $\log n$ (without a specified) base means $\log _{2} n$. Also, $\log \mathrm{n}$ is an abbreviation for $\log (\mathrm{n})$.

1. $\log (2 n \log n)$

2. $\log (n / 2)$
3. $\log (\mathbf{s q r t}(n))$
4. $\log (\log (\operatorname{sqrt}(n)))$
5. $\log _{4} n$
6. $2^{2 \log n}$
7. if $n=2^{3 k}-1$, solve for k.

Where do logs come from in algorithm analysis?

Running Times

- Algorithms may have different time complexity on different data sets
- What do we mean by "Worst Case"?
- What do we mean by "Average Case"?
- What are some application domains where knowing the Worst Case time complexity would be important?
- http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext

Average Case and Worst Case

Worst-case vs amortized cost for adding an element to an array using the doubling scheme

Worst-case:
$\mathrm{O}(\mathrm{n})$

amortized:
O(1)

Asymptotics: The "Big" Three

Big-Oh Big-Omega
Big-Theta

Asymptotic Analysis

- We only care what happens when N gets large
- Is the function linear? quadratic? exponential?

Figure 5.1

Running times for small inputs

Data Structures \& Problem Solving using JAVA/2E

Figure 5.2
Running times for moderate inputs

Data Structures \& Problem Solving using JAVA/2E
Mark Allen Weiss
© 2002 Addison Wesley

Figure 5.3

Functions in order of increasing growth rate

Function		The answer to most big- Oh questions is one of
c	Constant	these functions
$\log N$	Logarithmic	
$\log ^{2} N$	Log-squared	
N	Linear	
$N \log N$	Q $\log N$	a.k.a "log linear"
N^{2}	Cubic	
N^{3}	Exponential	
2^{N}		

Simple Rule for Big-Oh

- Drop lower order terms and constant factors
- $7 \mathrm{n}-3$ is $\mathrm{O}(\mathrm{n})$
- $8 n^{2} \log n+5 n^{2}+n$ is $O\left(n^{2} \log n\right)$

- The "Big-Oh" Notation

- given functions $\mathrm{f}(n)$ and $\mathrm{g}(n)$, we say that $\mathrm{f}(n)$ is $\boldsymbol{O}(\mathrm{g}(n))$ if and only if $\mathrm{f}(n) \leq \mathrm{cg}(n)$ for $n \geq n_{0}$
- c and n_{0} are constants, $\mathrm{f}(n)$ and $\mathrm{g}(n)$ are functions over non-negative integers
$C>0, n_{0} \geq 0$ and an integer

Big Oh examples

- A function $f(n)$ is (in) $O(g(n))$ if there exist two positive constants c and n_{0} such that for all $n \geq n_{0}$, $\mathrm{f}(\mathrm{n}) \leq \mathrm{c} \mathrm{g}(\mathrm{n})$
- So all we must do to prove that $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ is produce two such constants.
- $\mathrm{f}(\mathrm{n})=4 \mathrm{n}+15, \mathrm{~g}(\mathrm{n})=$???.
- $\mathrm{f}(\mathrm{n})=\mathrm{n}+\sin (\mathrm{n}), \mathrm{g}(\mathrm{n})=? ? ?$

> Assume that all functions have non-negative values, and that we only care about $\mathrm{n} \geq 0$. For any function $\mathrm{g}(\mathrm{n}), \mathrm{O}(\mathrm{g}(\mathrm{n})$) is a set of functions.

Big-Oh, Big-Omega and Big-Theta O() $\quad \Omega($) θ ()

- $f(n)$ is $O(g(n))$ if $f(n) \leq c g(n)$ for all $n \geq n_{0}$
- So big-Oh (O) gives an upper bound
- $f(n)$ is $\Omega(g(n))$ if $f(n) \geq c g(n)$ for all $n \geq n_{0}$ - So big-omega (Ω) gives a lower bound
- $f(n)$ is $\theta(g(n))$ if it is both $O(g(n)$ and $\Omega(g(n))$ Or equivalently:
- $f(n)$ is $\theta(g(n))$ if $c_{1} g(n) \leq f(n) \leq c_{2} g(n)$ for all $n \geq n_{0}$ - So big-theta (θ) gives a tight bound

We usually show algorithms (in code) are $\theta(\mathrm{g}(\mathrm{n})$). Next class, we'll also discuss how to show problems are $\theta(\mathrm{g}(\mathrm{n})$).

- True or false: $3 n+2$ is $\mathrm{O}\left(n^{3}\right)$
- True or false: $3 n+2$ is $\Theta\left(n^{3}\right)$

Big-Oh Style

- Give tightest bound you can
- Saying $3 n+2$ is $\mathrm{O}\left(n^{3}\right)$ is true, but not as useful as saying it's $\mathrm{O}(n)$
- On a test, we'll ask for Θ to be clear.
- Simplify:
- You could also say: $3 n+2$ is $O(5 n-3 \log (n)+17)$
- And it would be technically correct...
- It would also be poor taste ... and your grade will reflect that.

On homework 2...

- Suppose $T_{1}(N)$ is $O(f(N))$ and $T_{2}(N)$ is $O(f(N))$. Prove that $T_{1}(N)+T_{2}(N)$ is $O(f(N))$
- Hint: Constants c1 and c2 must exist for $\mathrm{T}_{1}(\mathrm{~N})$ and $\mathrm{T}_{2}(\mathrm{~N})$ to be $\mathrm{O}(\mathrm{f}(\mathrm{N}))$
- How can you use them?

Try it before next class

Limitations of big-Oh

- There are times when one might choose a higher-order algorithm over a lower-order one.
- Brainstorm some ideas to share with the class
C.A.R. Hoare, inventor of quicksort, wrote:

Premature optimization is the root of all evil.

Limits and Asymptotics

- Consider the limit

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}
$$

- What does it say about asymptotic relationship between f and g if this limit is...
- 0?
- finite and non-zero?
- infinite?

Apply this limit property to the following pairs of functions

1. n and n^{2}
on these questions and solutions ONLY, let $\log n$ mean natural log
2. $\log n$ and n
3. $n \log n$ and n^{2}
4. $\log _{a} n$ and $\log _{b} n \quad(a<b)$
5. n^{a} and $a^{n}(a>1)$
6. a^{n} and $b^{n}(a<b)$

Recall l'Hôpital's rule: under appropriate conditions,

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
$$

Q13-15

[^0]: Express as a closed-form expression in terms of K , then express in terms of N

