CSSE 230 Data Structures and Algorithm Analysis Day 1

$$
\sum_{i=1}^{n} i=1+2+3+\ldots+n=\frac{n^{2}+n}{2}
$$

Brief Course Intro Math Review
Growable Array Analysis

- two visual representations

Introductions

, Roll call:

- Introduce yourself to the person next to you
- Then introduce that person to the class
- You'll share more with classmates on discussion forum
- How many have programmed Python? Java? Another lang? Prog'd for 1 year? 2 years? $3+$ years?
- Micah Taylor
- Undergrad at Rose, industry, then grad school
- I teach system courses and graphics, and now 230!
- I write code for graphics and sound for fun

Goal: independently develop and debug software that uses correct, clear, and efficient algorithms and data structures

How to succeed in CSSE230

- Work hard
- Re-do CSSE220 as needed to make sure your foundations (recursion and linked lists) are strong
- Take initiative in learning
- Read the text, search Javadocs, come for help
, Focus while in this class
- Start early and plan for no all-nighters
- Two assignments each week: 1 homework set and 1 major program
- Never give or use someone else's answers

Tools

- http://www.rose-hulman.edu/class/csse/csse230/201520/Schedule/: schedule, assignments, room \#s!
- www.piazza.com, not email: homework questions - If you email, we'll usually reply, "Great question! Please post it to Piazza"
- moodle.rose-hulman.edu: gradebook, homework pdf turn-in, peer evaluations, solutions

After today's class, you will be able

 to...- analyze runtimes of code snippets by counting instructions.
- explain why arrays need to grow as data is added.
- derive the average and worst case time to insert an item into an array [GrowableArray exercise]

Analysis/Math Review

Notation

- Floor

$$
\lfloor x\rfloor=\text { the largest integer } \leq x
$$

- Ceiling

$$
\lceil\mathrm{x}\rceil=\text { the smallest integer } \geq x
$$

- java.lang. Math, provides the static methods floor() and ceil()

Summations

- Summations
- general definition:
$\sum_{i=s}^{t} f(i)=f(s)+f(s+1)+f(s+2)+\ldots+f(t)$
- where f is a function, s is the start index, and t is the end index

Geometric progressions: each term is a constant multiple of the previous term

- Geometric progression: $f(i)=a^{i}$
- given an integer $n \geq 0$ and a real number $0<a \neq 1$

$$
\sum_{i=0}^{n} a^{i}=1+a+a^{2}+\ldots+a^{n}=\frac{1-a^{n+1}}{1-a} \quad \begin{gathered}
\text { Memorize } \\
\text { this } \\
\text { formula! }
\end{gathered}
$$

- geometric progressions exhibit exponential growth

Exercise: What is $\sum_{i=2}^{6} 3^{i}$?
This will be useful for today's Growable Arrays exercise!

The sum can also be written
$a \uparrow n+1-1 / a-1$

Arithmetic progressions: constant difference Most important to us: a difference of 1

- Arithmetic progressions:
- An example

Exercise: $\sum_{i=21}^{40} i \begin{aligned} & \text { Also useful for today's } \\ & \text { Growable Arrays exercise! }\end{aligned}$

Visual proofs of the

$$
\sum_{i=1}^{n} i=1+2+3+\ldots+n=\frac{n^{2}+n}{2}
$$

- two visual representations summation formula

Application: Find exact and big-Oh

 runtime of Selection Sortfor ($i=n-1 ; i>0 ; i--)$ \{
int maxPos $=0$;
for (int $j=0 ; j<=i ; j++$) $\{$
if (a[j] > maxPos) \{
maxPos $=j$;
\}
\}
swap a[maxPos] with $\mathbf{a}[\mathrm{i}]$;
\}
-How many comparisons of array elements are done?
-Exact? Big-Oh?
-How many times are array elements copied?

Growable Array Analysis

An exercise in doubling, done by pairs of students

Arrays are ubiquitous

- Basis for ArrayLists, sorting, and hash tables
- Why? O(1) access to any position, regardless of the size of the array.
- Limitation:
- Fixed capacity!
- If it fills, you need to re-allocate memory and copy items
- How efficient is this?
- Consider two schemes: "add 1" and "double"

Work on Growable Array Exercise

- Work with a partner
- Hand in the document before you leave today if possible
- Get help as needed from me and the assistants.

