CSSE 230 – Data Structures and Algorithm Analysis
Sliding Blocks Programming Assignment
This project includes two milestones. See the course schedule for due dates. Milestone 1 is a document answering several questions about your initial design. Milestone 2 is your final solution. You will complete this project as a team. (I will assign teams after reviewing your partner surveys.)

Your solution, committed to SVN, will include all the .java files relating to your solution plus a file named README whose contents are described below. Detailed design and the coding and testing of your solution to this assignment must be that of the members of your team.

Background

Those of you who spend much time in toy stores may be familiar with "sliding-block" puzzles. They consist of a number of rectangular blocks in a tray; the problem is to slide the pieces without lifting any out of the tray, until achieving a certain configuration. An example (from Winning Ways, E.R. Berlekamp et al., Academic Press, 1982) is shown in Figure 1.

"Virtual" versions of these puzzles are available on the Web, for example, here.

Problem

Write a program named Solver.java that produces a solution to a sliding-block puzzle (if a solution exists) in as little execution time as possible. Your program need not produce the shortest possible sequence of moves. Input to your program will come from the command line and from files named there:

· An optional first argument will be a string whose first two characters are "–o" and whose remaining characters specify information about what debugging output the program should produce. (You may choose the format of this information.) The string "–ooptions" should cause the program to print all the debugging options and the effect of each option. If the "–o" argument is not provided, your program should produce no output beyond that required to display a solution to the puzzle.

· The next argument will name a file that specifies an initial tray configuration.

· Line 1 of this file will contain two positive integers, the length (number of rows) and width (number of columns) of the tray.

· Each subsequent line of this file will contain four nonnegative integers describing a block in the tray: the length and width of the block (both greater than 0), and the row and column of the upper left corner of the block. (The upper left corner of the tray is row 0, column 0.) Blocks are indistinguishable except for their size, and may appear in any order in this file. Thus the tray depicted in Figure 1 might be represented in the file as follows:

5 4

2 1 0 0

2 1 0 3

2 1 2 0

2 1 2 3

2 2 1 1

1 2 3 1

1 1 4 0

1 1 4 1

1 1 4 2

1 1 4 3

· The last argument will be the name of a file that specifies a desired final or goal configuration. This file is similar in format to the initial configuration file. Each line of this file contains four nonnegative integers: the length and width of the block (both greater than 0), and the desired position of the upper left corner of the block. This file will not necessarily contain entries for all blocks in the tray. Blocks may appear in any order in this file.
The goal configuration mentioned in Figure 1 is represented by the single line:

2 2 3 1
· If there were more than one 2-by-2 block in the initial configuration, the one-line goal would specify the position of any of the 2-by-2 blocks.
Figure 2 shows a goal configuration in which three of the 1-by-1 blocks have a specified arrangement, along with the corresponding goal file. Again, if there are more than three 1-by-1 blocks in the initial configuration, it doesn't matter which three of them end up in the specified goal positions.

	goal configuration
[image: image1.png]o
1
2
3
4

n

column

n

H

6

	goal file
1 1 3 1

1 1 4 2

1 1 3 2

	Figure 2

Thus your program would be run with the UNIX command

 java Solver [-oinfo] initialConfigFile goalConfigFile
where the -o argument is optional, info provides the debugging options you supply, and initialConfigFile and goalConfigFile name the files containing the initial block configuration and the goal configuration respectively. You may also supply these arguments to Eclipse. (See below for tips on checking out, compiling, updating, and running SVN projects on addiator.)

A solution to the puzzle will represent a sequence of position changes of blocks that, when starting with the specified initial configuration, ends up with blocks in the positions specified in the goal. The only legal moves are those that slide a block horizontally or vertically—not both—into adjacent empty space. Blocks may only be moved an integer number of spaces, and either the row or the column will be the same in the start position as in the end position for each move. (It's not legal to rotate a block.)

Your program should produce a line of output for each block move that leads directly to a solution. Each such line will contain four integers: the starting row and column of the upper left corner of the moving block, followed by the upper left corner's updated coordinates. Example output appears below; the indicated moves, applied to the starting configuration of Figure 1, achieve the goal in Figure 2. (The annotations would not appear in the solution output.)

	
	1 1 0 1
	
	move the 2x2 block up

	
	3 1 2 1
	
	move the 1x2 block up

	
	4 1 3 1
	
	move a 1x1 block up

	
	4 2 3 2
	
	move another 1x1 block up

	
	4 0 4 2
	
	move the leftmost 1x1 block two spaces over

If your program, run with debugging output disabled, finds a solution to the puzzle, it should exit normally after producing only output as just described, that is, the lines representing block moves that solve the puzzle. In particular, if the initial configuration satisfies the goal, your program should exit normally after producing no output. If your program cannot find a solution to the puzzle, it should exit with the call

System.exit(1);

again after producing no output.

You should check that command-line arguments are correctly specified, but you may assume that the initial and goal configuration files are free of errors. You may also assume that the length and width of a tray are no larger than 256.

Subversion on Addiator

The final testing of your project will be done on the server “addiator”. Using a common testing machine, which is also available to you, levels the playing field for all teams.

You can connect to addiator using a terminal program like SecureCRT. You will need to create an “ssh” (secure shell) connection to addiator.rose-hulman.edu. Use your Kerberos password to log in.

Rather than copying individual files to addiator for testing, you will probably find it easier to check out a copy of your project from SVN directly onto addiator. You can check out your SlidingBlocks project on addiator using the command:

svn co http://svn.csse.rose-hulman.edu/repos/repoName/SlidingBlocks

substituting your team repository name for repoName. This command will create a new subdirectory named SlidingBlocks with the contents of your project. Once checked out, you may update the project on addiator by giving the command:

svn update SlidingBlocks
Eclipse compiles your Java programs automatically. Outside of Eclipse we need to compile the files manually. The following command will switch the addiator “shell” into the SlidingBlocks directory (cd means “change directory”):

cd SlidingBlocks
from there you can compile with:

javac *.java
which says to run the javac command (“Java compiler”) on all files whose names end with “.java”. You can use the “list” command to see the list of files:

ls
Here’s a small transcript showing a single test case. The stuff you would type is in bold:

[~]$ cd Private
[Private]$ svn co http://svn.csse.rose-hulman.edu/repos/csse230-200920-clifton/SlidingBlocks
A SlidingBlocks/GoalFileParser.java

A SlidingBlocks/Tray.java

...

A SlidingBlocks/hard/supercompo.goal

A SlidingBlocks/hard/big.tray.1

Checked out revision 913.

[Private]$ svn update SlidingBlocks
At revision 913.

[Private]$ cd SlidingBlocks
[SlidingBlocks]$ ls # Notice no class files before compiling:
BlockFileParser.java easy/

 lib/

Tray.java

Block.java GoalFileParser.java mine/

CompressedTray.java hard/

 Move.java

Debug.java InitFileParser.java Solver.java

[SlidingBlocks]$ javac *.java # compiles all java files
[SlidingBlocks]$ ls # Notice that there are class files now:
Block.class Debug.class hard/ Move.java

BlockFileParser.class Debug.java InitFileParser.class Solver.class

BlockFileParser.java Debug$Option.class InitFileParser.java Solver.java

Block.java easy/ lib/ Tray.class

CompressedTray.class GoalFileParser.class mine/ Tray.java

CompressedTray.java GoalFileParser.java Move.class

[SlidingBlocks]$ java Solver easy/easy easy/easy.goal # gives path to files
1 0 0 0

0 0 0 1

0 1 1 1

[SlidingBlocks]$ cd .. # two dots says “change directory up one level”
[Private]$ svn update SlidingBlocks
At revision 913.

Miscellaneous requirements

The amount of space your program needs is not an important consideration, except that your program has to fit in the default allocation of memory provided on addiator. An experiment we recommend is to determine how many configurations you can add to a hash table before you run out of memory. (The blocks in the puzzle described in Figure 1 may be moved into 65880 different configurations. The blocks in the diagram below may be moved into 109260 different configurations.)
 [image: image2.png]

It will be helpful to organize your program into classes that allow easy substitution of efficient code for inefficient code or of one algorithm for another (e.g. depth-first move processing for breadth-first) in each area. Use straightforward algorithms where possible. Your methods should not be overly long, complex, or repetitive.

All data fields and methods within each class must have the proper public/private/protected/package qualifier. In particular, you shouldn’t make things public that would let a user corrupt your data structures (even if none of your own code would do this).

You should associate debugging output with program events appropriately, and choose an appropriate debugging level for each set of output. Your debugging output facility should allow the user to select both the classes for which output is produced and the level of detail of output. Any interesting event that happens in your program—e.g. making/unmaking a move, encountering a previously seen configuration, determining the set of possible moves, or comparing a configuration with the goal—should be displayed by debugging output at some level. You should also incorporate output that will help you make implementation decisions about time/memory tradeoffs. Describe your debugging output facility in your README file (see below).

Your code should display good documentation and style, as usual. Provide an overview comment with each class that describes the abstract object and any invariants on the abstract object state (e.g. "A Counter represents a mutable, non-negative, non-decreasing integer counter."). Accompany each method with descriptions of its preconditions and effects or return value. When throwing exceptions, supply informative messages. Give your variables and methods informative names that conform to coding conventions (class names capitalized, names of constants in all upper case, and names of data members uncapitalized).

The README document

Part of the credit for this project comes from the README submitted in your project folder. (Note that you can drag HTML, pdf, and other files onto projects in Eclipse, then commit them to SVN.) Your README file should include the information listed below, answering all the questions in each category.

· An explanation of how you split the work for this assignment between members of your team and why you split it this way. (I will also ask you to individually complete a performance review of your teammates.)

· A brief description of the overall organization of your submitted program—algorithms and data structures—that lists operations on blocks, trays, and the data structure that stores previously visited tray configurations. Diagrams will be useful here. This description should contain enough detail for another CSSE230 student to understand clearly how the corresponding code would work.

· A description of any other files you're submitting.

· A description of your debugging output facility and how to enable it.

· Describe the bugs you encountered and fixed, and indicate what if anything you should have done differently to construct your program. Also describe and explain any bugs that remain; a bug you admit to will cost you fewer points than a bug you don't mention.

In general, comments in your code will describe information specific to the corresponding class, while the README file contains information that relates classes and describes and provides rationale for design and implementation decisions. However, your README file should be written to be read on its own without a copy of the program code at hand, so there may be some duplicate information.

We encourage you to build the README file as you design, code, and test rather than putting it off until the end.

Milestone 1: Design: 60 points

For Milestone 1 you will submit a document that describes your initial design.

Basically, your program will search the tree of possible move sequences to find a solution to the puzzle. Questions you are to consider in your program design, and which you should discuss in your Milestone 1 document, include the following:

1. The program will generate moves possible from a given configuration. This will involve examination either of the blocks in the tray or of the empty space in the tray. Should the tray be stored as a list of blocks/empty spaces to optimize move generation, or should the locations in the tray be represented explicitly (e.g., using a matrix)? If the former, should blocks/spaces in the list be sorted?

2. Prior to each move, the program must check whether the desired configuration has been achieved. What tray representation optimizes this operation? If this representation is incompatible with implementations that optimize move generation, how should the conflict be resolved?

3. Once it has a collection of possible next moves, the program will choose one to examine next. Should the tree of possible move sequences be processed depth first, breadth first, or some other way?

4. Should block moves of more than one space be considered? Why or why not?

5. The program needs to make and unmake moves. Again, a representation that optimizes these operations may not be so good for others. Describe how you will evaluate tradeoffs among representations.

6. The program must detect configurations that have previously been seen in order to avoid infinite cycling. Hashing is a good technique to apply here. What's a good hash function for configurations? The default limits for Java memory allocation may limit the maximum number of configurations that the table can contain. How can this constraint be accommodated, and what effect does it have on other operations?

Some of these questions can be answered with careful analysis, and you should give that analysis. Others require empirical evidence. If you have time before the milestone deadline, incorporate in your program sufficient output information (governed by the debugging options) to gather this evidence and describe your decision. If not, it is OK to describe your plan to gather and analyze that data.

Submit your design document by uploading a Word or pdf document (no other formats will be accepted) to the Sliding Blocks Milestone 1 drop box on ANGEL. Be sure to include the names of all team members at the beginning of your document. (Merely entering the names into ANGEL is not sufficient.) Only one team member should upload the document.

Milestone 2 Grading: 250 points total

200 Program points:

1. Your writeup will be examined for information about your tray data structure.

2. Your program will be compiled using the command

javac -O Solver.java
If it fails to compile, you get no more program points. The "-O" (minus-Oh) option turns on optimization, and should be used for production runs. For debugging, use Eclipse.

3. Your program will be run, using the command

java Solver initialConfigFile goalConfigFile
on a selection of simple puzzles from the directory easy, using addiator. For example:

java Solver easy/1x1 easy/1x1.goal
You must correctly solve almost all of these puzzles, using under two minutes of execution time for each puzzle, to earn more than 130 of the program points. You may find the Unix time command useful for timing your program. (You are of course not allowed to "hard-code" solutions to these puzzles into your program.)

4. Your program will then be run, again using the command

java Solver initialConfigFile goalConfigFile
on a selection of hard puzzles, using addiator. Each one you solve in under two minutes of execution time earns you more points, up to a maximum of 70. Note that we will not be supplying arguments to the Java interpreter that modify the default memory allocation or the default maximum size of the system stack.

25 Style points:

Stylistic and organizational attributes of your program will then be evaluated to complete your program score. These include information supplied in comments and variable names, formatting and use of white space, organization, and appropriateness of debugging output.

25 points for README file.

Miscellaneous information

The typical solution to this project is around 1000 lines, and most teams find they have to rewrite sections of code to satisfy the efficiency constraints. Start planning soon.

In the lib folder of the Eclipse project is a Checker program that checks whether a given sequence of moves solves a given puzzle. The program takes two arguments, an initial configuration and a goal configuration in the same format as those for Solver.java. It also takes a sequence of moves, in the format to be produced by Solver.java, as standard input. Its output indicates whether the moves solve the puzzle, and if not, why not. On a UNIX system, you might run the program as follows:

cd SlidingBlocks

java Solver init goal | java -cp .:lib Checker init goal
The -cp .:lib argument tells Java to look for Checker in a different directory. Here’s an example:

cd SlidingBlocks
java Solver easy/1x1 easy/1x1.goal | java -cp .:lib Checker easy/1x1 easy/1x1.goal

Warning: The Checker doesn't check for extraneous junk characters on a line, instead giving a rather difficult-to-understand error message involving the inability to move.

Shell scripts are also provided in each test directory (easy, medium and hard) to run all the tests in that directory. Each script is named runtests and includes brief instructions in its comments. See the addiator transcript, linked from the project index page, for sample use of the shell scripts, plus some commentary.

