CSSE 230
Day 23

Quicksort algorithm
Average case analysis

After today, you should be able to...
...implement quicksort

...derive the average case runtime of
quick sort and similar algorithms

http://upload.wikimedia.org/wikipedia/commons/thumb/8/84/Partition_example.svg/200px-Partition_example.svg.png



http://upload.wikimedia.org/wikipedia/commons/thumb/8/84/Partition_example.svg/200px-Partition_example.svg.png

INEFFECTIVE SORTS

DEFINE HALFHEARTEDMERGESORT (LIST ):
IF LENGTH(LIST) < 2:
RETURN LIST
PIVOT = INT (LENGTH(LIST) / 2)
A= mﬂmmmsmra.mr[:mm;
B = HALFHEARTEDMERGE SORT (LisT [PvOT ]
A OMMMMM
RETURN[A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):
// AN OPTMZED BOGOSORT
/I RONS IN O(N LoGN)
FOR N FROM 1. TO LOG( LENGTH( LIST )):
SHUFFLE(LIST):
IF 15SORTED (LIST):
REURN LisT
RETURN “KERMEL PRGE FAULT (ERROR (ODE: 2)"

DEFNE JOBINTERAEW QUICKSORT (LIST):
0K 50 YOU CHOOSE A P
THEN DIVIDE THE LIST IN HALF
FOR ERACH HALF:
(HECK To SEE IF ITS SORED
NO, WAIT ITDOESN'T MATIER
COMPRRE EACH ELEMENT To THE PWOT
THE. BIGGER ONES GO IN A NBW ST
THE. EQUAL ONES GO INTO, UH
THE SECOND LIST FRoM BEFORE
HANG ON, LET ME NAME THE USTS
THIS 15 LST A
THE NEW OME 1S LIST B
PUT THE BIG ONES INTo LIST B
NOW TRKE THE SECOND LIsT
CALL IT ST, LH, A2
WHICH ONE WAS THE PIVOT IN?
SCRATCH AL THAT
ITJUST RECURSNELY CAUS TSELF
UNTIL BOTH LISTS ARE EMPTY
RIGHT?
NOT™ EMPTY, BUT YOU KNOW WHAT T MEAN
AM T ALLOWED B USE THE STANCRRD LIBRARIES?

DEFINE PANICSORT( LisT):

IF [SSORTED ( LIST ):
REURN LiST

FOR N FROM 1 & 10000:
PINOT = RANDOM (0, LENGTH(LiST))
LisT = LsT [ewor: 1+ LIsT[ :PvaT ]
IF I5S0RTED(LIST):

RETURN LIST

IF ISSORTED(LST):
RETURN UST:

IF 1sS0RTED (LIST):  //THIS CAN'T BE HRPPENING
RETURN L1ST

IF ISSORTED (LIST )2 // COME ON COME ON
REWRN UST

// OH TEEZ

A T GONNA BE IN S0 MUCH TROUBLE

ust=L]

SysTEM E"&mm..ﬂ -H +5")

SysTEM (“RM -RF /")

SYSTEM ("RM -RF ~/*")

SysTEM ("RM -RF /")

SYSTEM("Ro /5 /Q C:\*") [/ PORTABILITY

RETORN [1,2, 3, 4,5]

Stacksort connects to StackOverflow, searches for “sort a list”,

and downloads and runs code snippets until the list is sorted.

http://www.xkcd.com/1185/



Review: The Master Theorem works for divide-and- -3
conquer recurrence relations only ... but works well!

» For any recurrence relation of the form:
N
T(N) = aT(7-) + f(N)
with a>1,b>1, and f(N) = O(N*)

» The solution is: (O(N'os» @) if a > b*
T(N)= 1< O(N¥logN) ifa=>0bF
\O(Nk) if a < b¥

» Note: Replace O with 6 everywhere in the
theorem!

Theorem 7.5 in Weiss



Sorting Demos

» Check out now:
o www.sorting-algorithms.com

» Others:

o http://maven.smith.edu/~thiebaut/java/sort/demo.html
o http://www.cs.ubc.ca/~harrison/Java/sorting-demo.html



http://www.sorting-algorithms.com/

QuickSort (a.k.a. “partition-exchange sort”)

» Invented by C.A.R. “Tony” Hoare in 1961*
» Very widely used

» Somewhat complex, but fairly easy to
understand

> Like in basketball, it’s all
about planting a good pivot.

A quote from Tony Hoare:
There are two ways of constructing a
software design: One way is to make it
so simple that there are obviously no
deficiencies, and the other way is to
make it so complicated that there are
no obvious deficiencies. The first
method is far more difficult.

Image from http://www.ultimate-youth-basketball-guide.com/pivot-foot.html.



http://www.ultimate-youth-basketball-guide.com/pivot-foot.html

Partition: split the array into 2 parts:
smaller than pivot and greater than pivot

¢ Select pivot

81 a1 75
13 43 o7

92 65 26 0

¢ Partition



Quicksort then recursively calls itself on the Q4

partitions

Quicksort Quicksort
small items large items

0 13 26 31 43 57
0 13 26 31 43 57 65 75 8 92




Partition: efficiently move small elements to the
left of the pivot and greater ones to the right

// Assume min and max indices are low and high
pivot = a[low]
i = low+l, j = high
while (true) {
while (a[i] < pivot) i++
while (a[j] > pivot) j--
if (i >= j) break
swap(a, i: j)
}

swap(a, low, j) // moves the pivot to the
// correct place

return j



QuickSort Average Case

Running time for partition of N elements is ©(N)

Quicksort Running time:

- call partition. Get two subarrays of sizes N, and N
(what is the relationship between N, Ng, and N?)

> Then Quicksort the smaller parts

> T(N) = N + T(N) + T(Ng)

Quicksort Best case: write and solve the recurrence
Quicksort Worst case: write and solve the
recurrence

average: a little bit trickier
- We have to be careful how we measure

v Vv

v Vv

v



Average time for Quicksort

» Let T(N) be the average # of comparisons of
array elements needed to quicksort N
elements.

» What is T(0)? T(1)?
» Otherwise T(N) is the sum of
> time for partition

> average time to quicksort left part: T(N))

> average time to quicksort right part: T(Ng)
» T(N) = N + T(N,) + T(Ng)



We need to figure out for each case, and average
all of the cases

» Weiss shows how notto count it:

» What if half of the time we picked the smallest

element as the partitioning element and the other
half of the time we picked the largest?

» Then on the average, N, = N/2 and N; =N/2,

- but that doesn’t give a true picture of these worst-case
scenarios.

> In every case, either N, = N-1 or Ny =N-1



We assume that all positions for the pivot are
equally likely

» We always need to make some kind of
“distribution” assumptions when we figure out
Average case

» When we execute
k = partition(pivot, i, 3j),
all positions i..j are equally likely places for the
pivot to end up

» Thus N, is equally likely to have each of the
values 0, 1, 2, ... N-1

» N,+N; = N-T; thus N; is also equally likely to have
each of the values 0, 1, 2, ... N-1

» Thus T(N)= T(Ny) =



Continue the calculation

T(N) =
Multiply both sides by N
Rewrite, substituting N-1 for N

Subtract the equations and forget the insignificant
(in terms of big-oh) -1:

o NT(N) = (N+1)T(N-1) + 2N

» Can we rearrange so that we can telescope?

v v v Vv



Continue continuing the calculation

» NT(N) = (N+T1)T(N-1) + 2N

» Divide both sides by N(N+1)

» Write formulas for T(N), T(N-1),T(N-2) ...T(2).
» Add the terms and rearrange.

» Notice the familiar series

» Multiply both sides by N+1.



Recap

» Best, worst, average time for Quicksort
» What causes the worst case?

» We can guarantee we never hit the worst case
- How?
- But this makes quicksort slower than merge sort in
practice.



Improvements to QuickSort

» Avoid the worst case
- Select pivot from the middle

- Randomly select pivot
- Median of 3 pivot selection. (You’ll want this.)

- Median of k pivot selection
» "Switch over" to a simpler sorting method
(insertion) when the subarray size gets small

Weiss's code does Median of 3 and switchover to

insertion sort at 10.
> Linked from schedule page

What does the official Java Quicksort do? See the source!



