
Red-black trees

After today, you should be able to…
…determine if a tree is a valid red/black tree
…perform top-down insertion in a red/black tree

Red-black trees

BST with Log(n) runtime guarantee using only two crayons?

Inspired by pre-schoolers?

 Format same as Exam 1
◦ One 8.5x11 sheet of paper (2-sided) for written part
◦ Same resources as before for programming part

 Topics: weeks 1-6
◦ Reading, programs, in-class, written assignments.
◦ Especially

 Using various data structures
(lists, stacks, queues, sets, maps, priority queues)

 Binary trees, including BST, AVL, R/B, and threaded
 Traversals and iterators, size vs. height, rank

 Backtracking / Queens problem

 Algorithm analysis in general

 Through day 19, WA6, and
EditorTrees milestone 2

Sample exam on Moodle
has some good questions
(and extras we haven’t
done, like sorting)
Best practice: assignments.

T
F
IDK

1. It is a BST
2. Every node is either colored red or black.
3. The root is black.
4. No two successive nodes are red.
5. Every path from the root to a null node has the

same number of black nodes (“perfect black
balance”)

1

Runtime is O(height)

Best-case: if all nodes black, it is ~log n.

Worst case: every other node on the longest
path is red. Height ~2 log n.

 Like BST:
◦ Insert at leaf
◦ Color it red (to keep perfect black balance)

 But could make two reds in a row?
◦ On the recursive travel back up the tree (like AVL),
◦ rotate (single- and double-, like AVL)
◦ and recolor (new)

 Show that three recolor-rotations fix two reds in
a row while maintaining black balance.

 At end, always make root black.

2

Copyright © 2010 Pearson Education

2

Copyright © 2010 Pearson Education

2

Copyright © 2010 Pearson Education

2

 Bottom-Up insertion strategy must be
recursive.

 Solution:
 On the way down the tree to the insertion

point, if ever see a black node with two red
children, swap the colors.

2

Situation: A black node with two red children.

Action: - Recolor the node red and the
children black.

- If the parent is red, perform rotations,
otherwise continue down the tree

Does this change black balance? No.

X

Y Z

X

ZY

 On the way down the tree to the insertion point,
if ever see a black node with two red children,
swap the colors.

 The rotations are done while traversing down the
tree to the insertion point.
◦ If see black node with 2 red children on way down, make

parent red and children black.
◦ Avoid rotating into case (c) (2 red siblings) altogether.

 Top-Down insertion can be done with loops
without recursion or parent pointers, so is
slightly faster.

2

 Rotate when an insertion or color flip
produces two successive red nodes.

 Just like those for AVL trees:
◦ If the two red nodes are both left children or both

right children, perform a single rotation.
◦ Otherwise, perform a double rotation.

 Except we recolor nodes instead of adjusting
their heights.

1. Insert: 1, 2, 3, 4, 5, 6, 7, 8

2. Insert: 7, 6, 5, 4, 3, 2, 1, 1
◦ Relationship with (1)?

◦ Duplicates not inserted.

3. Insert: 10, 85, 15, 70, 20, 60, 30, 50, 65,
80, 90, 40, 5, 55

4. Use applet to check your work.

3

 Java uses:

 Slightly faster than AVL
trees

 What’s the catch?
◦ Need to maintain pointers

to lots of nodes (child,
parent, grandparent, great-
grandparent, great-great-
grandparent)

◦ The deletion algorithm is
nasty.

