® @ @

CSSE 230

Red-black trees

After today, you should be able to...
...determine if a tree is a valid red/black tree
...perform top-down insertion in a red/black tree



® @ @

CSSE 230

Red-black trees

BST with Log(n) runtime guarantee using only two crayons?

Inspired by pre-schoolers?



Exam 2

» Format same as Exam 1
- One 8.5x11 sheet of paper (2-sided) for written part
- Same resources as before for programming part

» Topics: weeks 1-6
- Reading, programs, in-class, written assignments.

EspeC|aIIy

- Using various data structures
(lists, stacks, queues, sets, maps, priority queues)

- Binary trees, including BST, AVL, R/B, and threaded
- Traversals and iterators, size vs. height, rank

- Backtracking / Queens problem
- Algorithm analysis in general

» Through day 19, WAG6, and
EditorTrees milestone 2 Best practice:



A red-black tree is a binary tree with 5 properties:

It is a BST

Every node is either colored red or black.
The root is black.

No two successive nodes are red.

Every path from the root to a null node has the
same number of black nodes (“perfect black

balance”)

® @ @

Ul D W N —

‘@ D

w




To search a red-black tree, just ignore the colors

o T

A

./@ D

@ )

so

Runtime is O(height)
Best-case: if all nodes black, it is ~log n.

Worst case: every other node on the longest
path is red. Height ~2 log n.



Bottom-Up Insertion Strategy

» Like BST:

> Insert at leaf
- Color it red (to keep perfect black balance)

» But could make two reds in a row?
> On the recursive travel back up the tree (like AVL),
> rotate (single- and double-, like AVL)
> ahd recolor (hew)

» Show that three recolor-rotations fix two reds in
a row while maintaining black balance.

» At end, always make root black.



2 Reds in a row, with red outer grandchild and
black sibling

figure 19.35

If S is black, a single
rotation between
parent and
grandparent, with
aﬁpropriate color
changes, restores
property 3 if X is an
outside grandchild.

(a) Before rotation (b) After rotation

Copyright © 2010 Pearson Education



2 Reds in a row, with red inner grandchild and

black sibling

B C

(a) Before rotation

(b) After rotation

figure 19.36

If S'is black, a double
rotation involving X,
the parent, and the
grandparent, with
aEpmpria’[e color
changes, restores
property 3 if X is an
inside grandchild.

2



2 Reds in a row, with red outer grandchild
and red sibling

figure 19.37

If S'is red, a single
rotation between
parent and
grandparent, with
aﬁpropriate color
changes, restores
property 3 between X
and P.

(a) Before rotation (b) After rotation

Copyright © 2010 Pearson Education



Case 3 (red sibling) can force us to do multiple
rotations recursively

» Bottom-Up insertion strategy must be
recursive.

» Solution:

» On the way down the tree to the insertion
point, if ever see a black node with two red
children, swap the colors.



Recolor red siblings on way down tree

Y(‘QZ”Y,{&;

Situation: A black node with two red children.

Action: - Recolor the node red and the
children black.
— If the parent is red, perform rotations,
otherwise continue down the tree

Does this change black balance? No.



Top-Down Insertion Strategy

» On the way down the tree to the insertion point,
if ever see a black node with two red children,
swap the colors.

» The rotations are done while traversing down the
tree to the insertion point.

- If see black node with 2 red children on way down, make
parent red and children black.

> Avoid rotating into case (c) (2 red siblings) altogether.

» Top—-Down insertion can be done with loops
without recursion or parent pointers, so is
slightly faster.



Rotation summary

» Rotate when an insertion or color flip
produces two successive red nodes.

» Just like those for AVL trees:

> If the two red nodes are both left children or both
right children, perform a sing/e rotation.

- Otherwise, perform a double rotation.

» Except we recolor nodes instead of adjusting
their heights.



Testing

1. Insert:1,2,3,4,5,6,7,8

2. Insert: 7,6,5,4,3,2,1, 1
- Relationship with (1)?
Duplicates not inserted.

3. Insert: 10, 85, 15, 70, 20, 60, 30, 50, 65,
80, 90, 40, 5, 55

4. Use applet to check your work.



Summary

» Java uses:

» Slightly faster than AVL
trees

» What’s the catch?

- Need to maintain pointers
to lots of nodes (child,
parent, grandparent, great-
grandparent, great—-great-
grandparent)

> The deletion algorithm is
nasty.

java.util

Class TreeMap<K,V>

java.lang.Object
java.util. AbstractMap<K.,V=
java.util. TreeMap<K,V>

Type Parameters:
K - the type of keys maintained by this map
7 - the type of mapped values

All Implemented Interfaces:

Serializable, Cloneable, Map<K,V>, NavigableMap<K,V

public class TreeMap<K,V>
extends AbstractMap<K,V>
implements NavigableMap<K,V>, Cloneable, Se
A @-_B_I_a_%gbased NavigableMap implementation. T

This implementation provides guaranteed log(n) time cost fc
—_————



