CSSE 230 Day 13

AVL trees and rotations

This week, you should be able to...

...perform rotations on height-balanced trees,
on paper and in code

... write a rotate() method

... search for the kth item in-order using rank

Announcements

» See schedule page

Summary: for fast tree operations, we must keep 2!
the tree somewhat balanced in O(log n) time

» Operations (insert, delete, search) are
O(height) (E)

» Tree heic?ht is O(log n) if perfectly G /@2

balance
- But maintaining perfect balance is O(n) @ @2 ® Q
» Height-balanced trees are still O(log n) @ @

> For T with height h, N(T) < Fib(h+3) - 1
- SoH < 1.44 log (N+2) - 1.328 *

» AVL (Adelson-Velskii and Landis) trees fu\/ ;\/5\\{@\
maintain height-balance using € O €
rotations (47

» Are rotations O(log n)? We’ll see...

AVL nodes are just like BinaryNodes,
but also have an extra “balance code”

or or

Different representations for / =\ :

- Just two bits in a low-level language
- Enum in a higher-level language

AVL Tree (Re)balancing Act

» Assume tree is height-balanced before
Insertion

» Insert as usual for a BST

» Move up from the newly inserted node

to the lowest “unbalanced” node (if any)
- Use the balance code to detect unbalance -
how?
» Do an appropriate rotation to balance
the sub-tree rooted at this unbalanced

nhode

Four types of rotations are required to remove
different cases of tree imbalances

» For example, a single left rotation:

We rotate by pulling the “too tall” sub-tree up
and pushing the “too short” sub-tree down

» Two basic cases

- “See saw’ case:
- Too-tall sub-tree is on the outside
- So tip the see saw so it’s level

> “Suck in your gut” case:
- Too-tall sub-tree is in the middle
- Pull its root up a level

Single Left Rotation Q2-3

Unbalanced node

becomes

Middle sub-tree
attaches to lower node
of the “see saw”

Diagrams are from Data Structures by E.M. Reingold and W.J. Hansen

Double Left Rotation Q4-5

Unbalanced node

becomes B

Y % Py
_Z (0r) s _ 2 Y
new new
(h)

Split between the
nodes pushed down

Weiss calls this “right-left double rotation”

Your turn — work with a partner

becomes

» Write the method:

» static BalancedBinaryNode singleRotateLeft (
BalancedBinaryNode parent, /* A */
BalancedBinaryNode child /* B *x/) {

}

Returns a reference to the new root of this subtree.
Don’t forget to set the balanceCode fields of the nodes.

v v

More practiCe— (sometime after class)

» Write the method:

» BalancedBinaryNode doubleRotateRight (
BalancedBinaryNode parent, /* A */
BalancedBinaryNode child, /* C */
BalancedBinaryNode grandChild /* B */) {

}
» Returns a reference to the new root of this subtree.

» Rotation is mirror image of double rotation from an
earlier slide

O(log N)? Q7-10

» Both kinds of rotation leave height the same
as before the insertion!

» Is insertion plus rotation cost really O(log N)?

Insertion/deletion

in AVL Tree: O(log n)
Find the imbalance point (if any): O(log n)
Single or double rotation: O(1)

in deletion case, may have
to do O(log N) rotations

Total work: O(log n)

We can find the kth element easily
if we add a rank field to BinaryNode

» Gives the in-order positiQf this node
within its own subtree
> j.e., the size of its left subtree

O-based
indexing

» How would we do findK,,?

» Insert and delete start similarly

—

N=0 P=0] 5=0[U=0

