
AVL trees and rotations

/

This week, you should be able to…
…perform rotations on height-balanced trees, 

on paper and in code
… write a rotate() method
… search for the kth item in-order using rank 



 See schedule page



 Operations (insert, delete, search) are 
O(height)

 Tree height is O(log n) if perfectly 
balanced
◦ But maintaining perfect balance is O(n)

 Height-balanced trees are still O(log n)
◦ For T with height h, N(T) ≤ Fib(h+3) – 1
◦ So H < 1.44 log (N+2) – 1.328 *

 AVL (Adelson-Velskii and Landis) trees 
maintain height-balance using 
rotations

 Are rotations O(log n)? We’ll see…

Q1



Different representations for / = \ :
 Just two bits in a low-level language

 Enum in a higher-level language

or/ = \or



 Assume tree is height-balanced before 
insertion

 Insert as usual for a BST

 Move up from the newly inserted node 
to the lowest “unbalanced” node (if any)
◦ Use the balance code to detect unbalance -

how?

 Do an appropriate rotation to balance 
the sub-tree rooted at this unbalanced 
node

/



 For example, a single left rotation:



 Two basic cases
◦ “See saw” case: 

 Too-tall sub-tree is on the outside

 So tip the see saw so it’s level

◦ “Suck in your gut” case:

 Too-tall sub-tree is in the middle

 Pull its root up a level



Diagrams are from Data Structures by E.M. Reingold and W.J. Hansen

Unbalanced node

Middle sub-tree 
attaches to lower node 

of the “see saw”

Q2-3



Weiss calls this “right-left double rotation”

Unbalanced node

Pulled up
Split between the 

nodes pushed down

Q4-5



 Write the method:
 static BalancedBinaryNode singleRotateLeft (

BalancedBinaryNode parent,   /* A */   
BalancedBinaryNode child     /* B */  ) {

}
 Returns a reference to the new root of this subtree.
 Don’t forget to set the balanceCode fields of the nodes.

Q6



 Write the method:
 BalancedBinaryNode doubleRotateRight (

BalancedBinaryNode parent,     /* A */   

BalancedBinaryNode child,      /* C */  

BalancedBinaryNode grandChild /* B */ ) {

}

 Returns a reference to the new root of this subtree.

 Rotation is mirror image of double rotation from an 
earlier slide



 Both kinds of rotation leave height the same 
as before the insertion!

 Is insertion plus rotation cost really O(log N)?

Q7-10

Insertion/deletion 
in AVL Tree: O(log n)

Find the imbalance point (if any): O(log n)

Single or double rotation: O(1)

in deletion case, may have
to do O(log N) rotations

Total work: O(log n)



Height-balanced, but not AVL
Insertion/deletion by index, not by 

comparing elements

How do we find the kth element?



 Gives the in-order position of this node 
within its own subtree
◦ i.e., the size of its left subtree

 How would we do findK
th

?

 Insert and delete start similarly

0-based 
indexing





Read the specification and check 
out the starting code

Milestone 1 due Tuesday


