
AVL trees and rotations

/

This week, you should be able to…
…perform rotations on height-balanced trees,

on paper and in code
… write a rotate() method
… search for the kth item in-order using rank

 See schedule page

 Operations (insert, delete, search) are
O(height)

 Tree height is O(log n) if perfectly
balanced
◦ But maintaining perfect balance is O(n)

 Height-balanced trees are still O(log n)
◦ For T with height h, N(T) ≤ Fib(h+3) – 1
◦ So H < 1.44 log (N+2) – 1.328 *

 AVL (Adelson-Velskii and Landis) trees
maintain height-balance using
rotations

 Are rotations O(log n)? We’ll see…

Q1

Different representations for / = \ :
 Just two bits in a low-level language

 Enum in a higher-level language

or/ = \or

 Assume tree is height-balanced before
insertion

 Insert as usual for a BST

 Move up from the newly inserted node
to the lowest “unbalanced” node (if any)
◦ Use the balance code to detect unbalance -

how?

 Do an appropriate rotation to balance
the sub-tree rooted at this unbalanced
node

/

 For example, a single left rotation:

 Two basic cases
◦ “See saw” case:

 Too-tall sub-tree is on the outside

 So tip the see saw so it’s level

◦ “Suck in your gut” case:

 Too-tall sub-tree is in the middle

 Pull its root up a level

Diagrams are from Data Structures by E.M. Reingold and W.J. Hansen

Unbalanced node

Middle sub-tree
attaches to lower node

of the “see saw”

Q2-3

Weiss calls this “right-left double rotation”

Unbalanced node

Pulled up
Split between the

nodes pushed down

Q4-5

 Write the method:
 static BalancedBinaryNode singleRotateLeft (

BalancedBinaryNode parent, /* A */
BalancedBinaryNode child /* B */) {

}
 Returns a reference to the new root of this subtree.
 Don’t forget to set the balanceCode fields of the nodes.

Q6

 Write the method:
 BalancedBinaryNode doubleRotateRight (

BalancedBinaryNode parent, /* A */

BalancedBinaryNode child, /* C */

BalancedBinaryNode grandChild /* B */) {

}

 Returns a reference to the new root of this subtree.

 Rotation is mirror image of double rotation from an
earlier slide

 Both kinds of rotation leave height the same
as before the insertion!

 Is insertion plus rotation cost really O(log N)?

Q7-10

Insertion/deletion
in AVL Tree: O(log n)

Find the imbalance point (if any): O(log n)

Single or double rotation: O(1)

in deletion case, may have
to do O(log N) rotations

Total work: O(log n)

Height-balanced, but not AVL
Insertion/deletion by index, not by

comparing elements

How do we find the kth element?

 Gives the in-order position of this node
within its own subtree
◦ i.e., the size of its left subtree

 How would we do findK
th

?

 Insert and delete start similarly

0-based
indexing

Read the specification and check
out the starting code

Milestone 1 due Tuesday

