

CSSE 230 Day 10

Size vs height in a Binary Tree

After today, you should be able to...

... use the relationship between the size and height of a tree to find the maximum and minimum number of nodes a binary tree can have

...understand the idea of mathematical induction as a proof technique

Announcements

- Today:
 - Size vs height of trees: patterns and proofs
 - Q/A and worktime for BSTs
- Tomorrow: Test
 - Written (50–70%):
 - big $O/\theta/\Omega$: true/false, using definitions, code analysis
 - Choosing an ADT to solve a given problem
 - Maybe a bit with binary trees
 - Programming (30-50%):
 - Implementing one ADT using another ADT
- Due next Tuesday:
 - Displayable Binary Tree
 - Meet partner today

Questions?

Size and Height of Binary Trees

Notation:

- Let **T** be a tree
- Write **h(T)** for the height of the tree, and
- **N(T)** for the size (i.e., number of nodes) of the tree
- Given h(T), what are the bounds on N(T)?
 N(T) <= _____ and N(T) >= _____
- Given N(T), what are the bounds on h(T)?
 Solve each inequality for h(T) and combine

Extreme Trees

- A tree with the maximum number of nodes for its height is a **complete** tree.
 - Its height is O(log N)
- A tree with the minimum number of nodes for its height is essentially a _____
 - Its height is O(N)
- Height matters!
 - Recall that the algorithms for search, insertion, and deletion in a binary search tree are O(h(T))

To prove recursive properties (on trees), we use a technique called mathematical induction

Actually, we use a variant called *strong induction*:

The former governor of California

Q6-8

Strong Induction

- To prove that p(n) is true for all $n \ge n_0$:
 - Prove that $p(n_0)$ is true (base case), and
 - For all $k > n_0$, prove that if we assume p(j) is true for $n_0 \le j < k$, then p(k) is also true
- An analogy for those who took MA275:
 - Regular induction uses the previous domino to knock down the next
 - Strong induction uses all the previous dominos to knock down the next!
- Warmup: prove the arithmetic series formula
- Actual: prove the formula for N(T)

Current assignment

Questions and answers Worktime