
Maximum Contiguous Subsequence Sum

Q0

After today’s class you will be able to:
provide an example where an insightful algorithm can be much

more efficient than a naive one.

 In {-2, 11, -4, 13, -5, 2}, MCSS is S2,4 = ?

 In {1, -3, 4, -2, -1, 6}, what is MCSS?

Q1

 Is MCSS q(n2)?
◦ Showing that a problem is W (g(n)) is much tougher. How do

you prove that it is impossible to solve a problem more
quickly than you already can?

◦ Can we find a yet faster algorithm?

A linear algorithm.

{-3, 4, 2, 1, -8, -6, 4, 5, -2}

 Consider {-3, 4, 2, 1, -8, -6, 4, 5, -2}

 Any subsequences you can safely ignore?
◦ Discuss with another student (2 minutes)

Q2

 We noted that a max-sum sequence Ai,j

cannot begin with a negative number.

 Generalizing this, it cannot begin with a
prefix Ai,k with k<j whose sum is negative.

◦ Proof by contradiction. Suppose that Ai,j is a max-

sum sequence and that Si,k is negative. In that case,

a larger max-sum sequence can be created by

removing Ai,k However, this violates our assumption

that Ai,j is the largest max-sum sequence.

Q3

 All contiguous subsequences that border the
maximum contiguous subsequence must
have negative or zero sums.

◦ Proof by contradiction. Consider a contiguous
subsequence that borders a maximum contiguous
subsequence. Suppose it has a positive sum. We
can then create a larger max-sum sequence by
combining both sequences. This contradicts our
assumption of having found a max-sum sequence.

 No max-sum sequence can start from inside a
subsequences that has a negative sum and extend
beyond it.

 In other words, if we find that Si,j is negative, we
can skip all sums that begin with any of Ai, Ai+1,
…, Aj.

 We can “skip i ahead” to be j+1.

Q6

Q4-5

Si,j is negative. So,
skip ahead per
Observation 3

Running time is is O (?)
How do we know?

Q7

 From SVN, checkout MCSSRaces

 Study code in MCSS.main()

 For each algorithm, how large a sequence can
you process on your machine in less than 1
second?

 The first algorithm we think of may be a lot
worse than the best one for a problem

 Sometimes we need clever ideas to improve it

 Showing that the faster code is correct can
require some serious thinking

 Programming is more about careful
consideration than fast typing!

Q9-10

 MCSS is O(n)!

 Is MCSS W(n) and thus q(n)?
◦ Yes, intuitively: we must at least examine all n elements

 Big picture:
◦ Showing that a problem is O(g(n)) is easy – just analyze the

algorithm.

◦ Showing that a problem is W (g(n)) in general is much
tougher. How do you prove that it is impossible to solve a
problem more quickly than you already can?

 If GM had kept up with technology like the
computer industry has, we would all be driving
$25 cars that got 1000 miles to the gallon.

- Bill Gates

 If the automobile had followed the same
development cycle as the computer, a Rolls-
Royce would today cost $100, get a million miles
per gallon, and explode once a year, killing
everyone inside.

- Robert X. Cringely

A preview of Abstract Data Types
and Java Collections

This week’s major program

An exercise in implementing your own
growable circular Queue:

1. Grow it as needed (like day 1 exercise)

2. Wrap-around the array indices for more
efficient dequeuing

Discuss Stacks as a warmup (push, pop), then
ideas for Queues (enqueue, dequeue)

Analyze implementation choices for Queues –
much more interesting than stacks!

An exercise in writing cool algorithms that
evaluate mathematical expressions:

Infix: 6 + 7 * 8

Postfix: 6 7 8 * +

Both using stacks.

Q8

 Plan when you'll be working

 Review the pair programming video as
needed

 Check out the code and read the specification
together

