QO

CSSE 230 Day 4

Maximum Contiguous Subsequence Sum

After today’s class you will be able to:

provide an example where an insightful algorithm can be much
more efficient than a naive one.

Recap: MCSS

Problem definition: Given a non-empty
sequence of n (possibly negative) integers
Ay, Az, ..., A,y find the maximum consecutive
subsequence S; ; = {_:f Ay, and the
corresponding values of i and ;.

v In{-2,11,-4,13, -5, 2}, MCSS is S, , = ?
v In{1, -3, 4, -2, -1, 6}, what is MCSS?

Ql

Recap: Eliminate the most obvious
inefficiency, get ©(N?)

for{ int 1 = 0; 1 < a.length; 1i++)} {
int thiss5um = 07
for{ int J =1i; 7 < a.length; j++) {
this5um += a[J]:;

1f{ this5um > maxSum } {
maxsSum = thisSum;
segstart 1;
seqgbEnd I

MCSS is O(n?)

» Is MCSS 06(n?)?

> Showing that a problem is Q (g(n)) is much tougher. How do
you prove that it is impossible to solve a problem more
quickly than you already can?

- Can we find a yet faster algorithm?

f(n) is O(g(n)) if f(n) < cg(n) for all n = n,

> So O gives an upper bound

f(n) is Q(g(n)) if f(n) = cg(n) for all n = n,

- So Q gives a lower bound

f(n) is 6(g(n)) if c;g(n) < f(n) < c,g(n) for all n = n,
> So 6 gives a tight bound

> f(n) is 6(g(n)) if it is both O(g(n)) and Q(g(n))

Q2
Observations?

» Consider{-3, 4, 2, 1, -8, -6, 4, 5, -2}

» Any subsequences you can safely ignore?
> Discuss with another student (2 minutes)

Q3
Observation 1

» We noted that a max-sum sequence A;;
cannot begin with a negative number.

» Generalizing this, it cannot begin with a
prefix A; , with k<j whose sum is negative.

- Proof by contradiction. Suppose that A;; is a max-
sum sequence and that §; | is negative. In that case,
a larger max-sum sequence can be created by
removing A; . However, this violates our assumption
that A, is the largest max-sum sequence.

Observation 2

» All contiguous subsequences that border the
maximum contiguous subsequence must
have negative or zero sums.

- Proof by contradiction. Consider a contiguous
subsequence that borders a maximum contiguous
subsequence. Suppose it has a positive sum. We
can then create a larger max-sum sequence by
combining both sequences. This contradicts our
assumption of having found a max-sum sequence.

Observation 3

» No max-sum sequence can start from inside a
subsequences that has a negative sum and extend
beyond it.

» In other words, if we find that S is negative, we
can skip all sums that begin with any of A, A,
o A

» We can “skip i ahead” to be j+1.

Q6

Q4-5
Observation 3
For any i, let j = i be the smallest number

such that §; ; <0.

Then forany p and g such thati < p< j and
p<q:

« either A, ;, isnota MCS, or

* 5,4 1s less than or equal to a sum already
seen (i.e., one with subscripts less than i
and j respectively).

Proof of Observation 3
Proof: Note that S; , = S; ,-1+ S, 4. By

i, p—

assumption, S; ,_; =0, since p—1< j, and

Sip—1=0implies §; , = S, .. Consider cases:

* Suppose ¢q > j, then A; ; is part of A; , and
(by Obs. 1) A; 41s nota MCS. But
Si.g = Sp,q, SO Ay, o 1s not a MCS either.

* Suppose ¢ = j, then S; ; is a “sum already

seen’. Since S, , = §; , the claim holds.

New, improved code! Q7

public static Result mcssLinear (int[] seq) {
Eesult result = new Eesult();
result.sum = 0;
int thisSum = 0;

int 1 = 0;
for (int] = 0; 7 < seq.length; j++) |
thisSum += seqgljl:

if (thisSum > result.sum) {
result.sum = thisSum;
result.startIndex = 1i;

result.endIndex = j; S IS negative. So,
} else if (thisSum < 0) { 4///==

sk|p ahead per
// adwvances start to where end C)b t 3
// will be on NEXT iteration servation

i=17+ 1;
thissum = 0;

}
) Running time is is O (?)

return result; HOW dO we know?

Time Trials!

» From SVN, checkout MCSSRaces
» Study code in MCSS.main()

» For each algorithm, how large a sequence can
you process on your machine in less than |
second?

Q9-10

MCSS Conclusions

» The first algorithm we think of may be a lot
worse than the best one for a problem

» Sometimes we need clever ideas to improve it

» Showing that the faster code is correct can
require some serious thinking

» Programming is more about careful
consideration than fast typing!

What have we shown?

» MCSS is O(n)!
» Is MCSS Q(n) and thus 6(n)?

> Yes, intuitively: we must at least examine all n elements

» Big picture:
> Showing that a problem is O(g(n)) is easy - just analyze the
algorithm.
- Showing that a problem is Q (g(n)) in general is much
tougher. How do you prove that it is impossible to solve a
problem more quickly than you already can?

Interlude

» If GM had kept up with technology like the
computer industry has, we would all be driving
$25 cars that got 1000 miles to the gallon.

- Bill Gates

» If the automobile had followed the same
development cycle as the computer, a Rolls-
Royce would today cost $100, get a million miles
per gallon, and explode once a year, killing
everyone inside.

- Robert X. Cringely

Stacks and Queues Part 1

An exercise in implementing your own
growable circular Queue:

1. Grow it as needed (like day 1 exercise)

2. Wrap-around the array indices for more
efficient dequeuing

Discuss Stacks as a warmup (push, pop), then
ideas for Queues (enqueue, dequeue)

Analyze implementation choices for Queues -
much more interesting than stacks!

Stacks Part 2: Evaluator

An exercise in writing cool algorithms that
evaluate mathematical expressions:

Infix:6 + 7 * 8
Postfix;: 6 7 8 * +

Both using stacks.

Q8

Meet your partner

» Plan when you'll be working

» Review the pair programming video as
needed

» Check out the code and read the specification
together

