
Maximum Contiguous Subsequence Sum

After today’s class you will be able to:
state and solve the MCSS problem on small arrays by observation

find the exact runtimes of the naive MCSS algorithms



 Good comments:
◦ Javadoc comments for public fields and methods.
◦ Internal comments for anything that is not obvious.

 Good variable and method names:
◦ Eclipse has name completion (ALT /), so the “typing 

cost” of using long names is small
 Use local variables and static methods (instead of 

fields and non-static methods) where appropriate
◦ “where appropriate” includes any place where you 

can’t explicitly justify creating instance fields
 No super-long lines of code
 No super-long methods: use top down design
 Consistent indentation (ctrl-shift f)
 Blank lines between methods, space after punctuation



 Consider the limit

 What does it say about asymptotic relationship 
between f and g if this limit is…
◦ 0?

◦ finite and non-zero?

◦ infinite?
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1. n and n2 

2. log n and n (on these questions and solutions 
ONLY, let log n mean natural log)

3. n log n and n2

4. logan and logbn (a < b) 

5. na and an (a > =1)

6. an and bn (a < b) Recall l’Hôpital’s rule: 
under appropriate conditions,
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A deceptively deep problem 
with a surprising solution.

{-3, 4, 2, 1, -8, -6, 4, 5, -2}
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 It’s interesting

 Analyzing the obvious solution is instructive

 We can make the program more efficient



 Problem: Given a sequence of numbers, find 
the maximum sum of a contiguous 
subsequence.

 Consider:
◦ What if all the numbers were positive?

◦ What if they all were negative?

◦ What if we left out “contiguous”?



 In {-2, 11, -4, 13, -5, 2}, S2,4 = ?

 In {1, -3, 4, -2, -1, 6}, what is MCSS?

 If every element is negative, what’s the MCSS?

1-based indexing
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 Design one right now. 
◦ Efficiency doesn’t matter. 

◦ It has to be easy to understand.

◦ 3 minutes

 Examples to consider:
◦ {-3, 4, 2, 1, -8, -6, 4, 5, -2}

◦ {5, 6, -3, 2, 8, 4, -12, 7, 2} 
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Where 

will this 

algorithm 

spend the 

most 

time?

How many times 

(exactly, as a function of 
N = a.length) will that 
statement execute?

i: beginning of 
subsequence

j: end of 
subsequence

k: steps through 
each element of 
subsequence

Find the sums of 
all subsequences



 What statement is executed the most often?

 How many times?

 How many triples, (i,j,k) with 1≤i≤k≤j≤n ?

Outer numbers could be 0 and n – 1, 
and we'd still get the same answer.



 By hand

 Using Maple



 How many triples, (i,j,k) with 1≤i≤k≤j≤n ?

 What is that as a summation?

 Let’s solve it by hand to practice with sums
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 When it gets down to “just Algebra”, Maple is 
our friend









 Computer Science is no more about 
computers than astronomy is about .

Donald Knuth



 Computer Science is no more about 
computers than astronomy is about 
telescopes.

Donald Knuth



Observe that 
𝑛(𝑛+1)(𝑛+2)

6
= 

𝑛 + 2
3

, 

from basic counting/probability

 The textbook makes use of this in a curious 
way to find the sum more easily. Fun, but not 
required for class.



 We showed MCSS is O(n3). 
◦ Showing that a problem is O(g(n)) is relatively easy – just 

analyze a known algorithm.

 Is MCSS W(n3)? 
◦ Showing that a problem is W (g(n)) is much tougher. How do 

you prove that it is impossible to solve a problem more 
quickly than you already can?

◦ Or maybe we can find 
a faster algorithm?



 The performance is bad!



This is Θ(?)



 Is MCSS q(n2)? 
◦ Showing that a problem is W (g(n)) is much tougher. How do 

you prove that it is impossible to solve a problem more 
quickly than you already can?

◦ Can we find a yet faster algorithm?



Tune in next time for the 
exciting conclusion!

http://www.etsu.edu/math/gardner/batman
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