
Maximum Contiguous Subsequence Sum

After today’s class you will be able to:
state and solve the MCSS problem on small arrays by observation

find the exact runtimes of the naive MCSS algorithms



 Good comments:
◦ Javadoc comments for public fields and methods.
◦ Internal comments for anything that is not obvious.

 Good variable and method names:
◦ Eclipse has name completion (ALT /), so the “typing 

cost” of using long names is small
 Use local variables and static methods (instead of 

fields and non-static methods) where appropriate
◦ “where appropriate” includes any place where you 

can’t explicitly justify creating instance fields
 No super-long lines of code
 No super-long methods: use top down design
 Consistent indentation (ctrl-shift f)
 Blank lines between methods, space after punctuation



 Consider the limit

 What does it say about asymptotic relationship 
between f and g if this limit is…
◦ 0?

◦ finite and non-zero?

◦ infinite?

)(

)(
lim

ng

nf

n 

Q12



1. n and n2 

2. log n and n (on these questions and solutions 
ONLY, let log n mean natural log)

3. n log n and n2

4. logan and logbn (a < b) 

5. na and an (a > =1)

6. an and bn (a < b) Recall l’Hôpital’s rule: 
under appropriate conditions,

Q13-15



A deceptively deep problem 
with a surprising solution.

{-3, 4, 2, 1, -8, -6, 4, 5, -2}

Q1



 It’s interesting

 Analyzing the obvious solution is instructive

 We can make the program more efficient



 Problem: Given a sequence of numbers, find 
the maximum sum of a contiguous 
subsequence.

 Consider:
◦ What if all the numbers were positive?

◦ What if they all were negative?

◦ What if we left out “contiguous”?



 In {-2, 11, -4, 13, -5, 2}, S2,4 = ?

 In {1, -3, 4, -2, -1, 6}, what is MCSS?

 If every element is negative, what’s the MCSS?

1-based indexing

Q2-4



 Design one right now. 
◦ Efficiency doesn’t matter. 

◦ It has to be easy to understand.

◦ 3 minutes

 Examples to consider:
◦ {-3, 4, 2, 1, -8, -6, 4, 5, -2}

◦ {5, 6, -3, 2, 8, 4, -12, 7, 2} 

Q5



Where 

will this 

algorithm 

spend the 

most 

time?

How many times 

(exactly, as a function of 
N = a.length) will that 
statement execute?

i: beginning of 
subsequence

j: end of 
subsequence

k: steps through 
each element of 
subsequence

Find the sums of 
all subsequences



 What statement is executed the most often?

 How many times?

 How many triples, (i,j,k) with 1≤i≤k≤j≤n ?

Outer numbers could be 0 and n – 1, 
and we'd still get the same answer.



 By hand

 Using Maple



 How many triples, (i,j,k) with 1≤i≤k≤j≤n ?

 What is that as a summation?

 Let’s solve it by hand to practice with sums

Q6, Q7



 When it gets down to “just Algebra”, Maple is 
our friend









 Computer Science is no more about 
computers than astronomy is about .

Donald Knuth



 Computer Science is no more about 
computers than astronomy is about 
telescopes.

Donald Knuth



Observe that 
𝑛(𝑛+1)(𝑛+2)

6
= 

𝑛 + 2
3

, 

from basic counting/probability

 The textbook makes use of this in a curious 
way to find the sum more easily. Fun, but not 
required for class.



 We showed MCSS is O(n3). 
◦ Showing that a problem is O(g(n)) is relatively easy – just 

analyze a known algorithm.

 Is MCSS W(n3)? 
◦ Showing that a problem is W (g(n)) is much tougher. How do 

you prove that it is impossible to solve a problem more 
quickly than you already can?

◦ Or maybe we can find 
a faster algorithm?



 The performance is bad!



This is Θ(?)



 Is MCSS q(n2)? 
◦ Showing that a problem is W (g(n)) is much tougher. How do 

you prove that it is impossible to solve a problem more 
quickly than you already can?

◦ Can we find a yet faster algorithm?



Tune in next time for the 
exciting conclusion!

http://www.etsu.edu/math/gardner/batman

Q8, Q9


