CSSE 230 Day 3

Maximum Contiguous Subsequence Sum

After today’s class you will be able to:

state and solve the MCSS problem on small arrays by observation
find the exact runtimes of the naive MCSS algorithms



v

v

v

v VvV VvV Vv

Reminder of good code style

Good comments:

- Javadoc comments for public fields and methods.

> Internal comments for anything that is not obvious.
Good variable and method names:

> Eclipse has name completion (ALT /), so the “typing
cost” of using long names is small

Use local variables and static methods (instead of
fields and non-static methods) where appropriate

- “where appropriate” includes any place where you
can’t explicitly justify creating instance fields

No super-long lines of code

No super-long methods: use top down design
Consistent indentation (ctrl-shift f)

Blank lines between methods, space after punctuation



Review: Limits and Asymptotics

» Consider the limit _ f(r
im

N—0o0 g(n)

» What does it say about asymptotic relationship
between f and g if this limit is...
- 07
> finite and non-zero?
> infinite?

Q12



Apply this limit property to the
following pairs of functions

1. nh and n?

2. log n and n (on these questions and solutions
ONLY, let log n mean natural log)

3. n log n and n?

2. log,n and logy,n (a < b)
s.n2and ah (a > =1)

6

~a"and b" (a < b) [Recall 'Hépital’s rule:
under appropriate conditions,

lim M = lim f'(n)
n—oo g(n)  n—oo g'(n)

Q13-15






Why do we look at this problem?

» It’s interesting
» Analyzing the obvious solution is instructive

» We can make the program more efficient



A Nice Algorithm Analysis Example

» Problem: Given a sequence of numbers, find
the maximum sum of a contiguous

subsequence.

» Consider:
- What if all the numbers were positive?
- What if they all were negative?
- What if we left out “contiguous”™?




Formal Definition: Maximum Q2-4

Contiguous Subsequence Sum

Problem definition: Given a non-empty
sequence of n (possibly negative) integers
Ay, Az, ..., A,y find the maximum consecutive
subsequence S; ; = Lf A, and the
corresponding values of i and ;.

»In{-2,11,-4,13,-5,2} S, , =7
» In {1, -3, 4, -2, -1, 6}, what is MCSS?
» If every element is negative, what’s the MCSS?

1-based indexing




Q5
A quick-and-dirty algorithm

» Design one right now.
- Efficiency doesn’t matter.

> |t has to be easy to understand.
> 3 minutes

» Examples to consider:
© {_3! 4! 2! ]1 _8’ _6’ 41 51 _2}
0{5161 _312181 41_]21 71 2}




First Algorithm Find the sums of
all subsequences

public final class MaxSubTest ({
private static int segStart = 0;
private static int seqgEnd = 0;
/¥ First maximum contiguous subsedquence sum algorithm.
* segEtart and segEnd represent the actual best sequence.

*f
public static int maxSubSuml( int [ ] a ) {
i: beginning of | int maxSum = 0; Where

subsequence w:aualysis we use "n" as a shorthand for "a length - .
a for( in® i = 0; i < a.length; i++ ) " will this

- for( int,j = i; j < a.length; j++ ) { |algorithm
J: end of — int thisSum = 0;
subsequence spend the

for( int k = i; k <= J; k++ ) most
k: steps through /”fsvs'-lm t= al k ] < C—

] time?

each element of if( thisSum > maxSum ) {
subsequence maxSum = thisSum;

segStart = 1i; _

seqEnd = j; How many times

} } (exactly, as a function of
return maxSum: N = a.length) will that
} statement execute?




Analysis of this Algorithm

» What statement is executed the most often?

» How many times?

» How many triples, (1,3,k) with 1<1<k<j<n ?

//In the analys1s we use "n" as a shorthand for "a length "
for( int 1 = 0; 1 < a.length; i++ )
for( int 3 = 1; jJ < a.length; j++ )
int thisSum = 0;

for( int k = 1; k <= j; k++ )
thisSum += al[ k ];

Outer numbers could be 0 and n - 1,

and we'd still get the same answer.

{




How to find the exact sum

» By hand

» Using Maple



Q6, Q7
Counting is (surprisingly) hard!

» How many triples, (1,3,k) with 1<i1<k<j<n?

» What is that as a summation?
. ;- o i Y
NYTNTTNTT

# F F

il | il | d—

=1\ j=i \ k=i J )

» Let’s solve it by hand to practice with sums



Simplify the sum

. .f"'H ,f'j Y
>I>
i | i | i—

=1\ j=i \ k=i J

\

» When it gets down to “just Algebra”, Maple is
our friend



Help from Maple, part 1

Sumphityving the last step ot the monster sum
> simplify((n"2+3*n+2) /2*n
-(n+3/2)*n* (n+l) /2+1/2*n* (n+l1) * (2*n+1) /6) ;
ln3+ln2+ln
6 2 3
> factor (%) ;
1

—(n+2)n(n+1)
6



Help from Maple, part 2

Letting Maple do the whole thing for us:
sum(sum(sum(l, k=1i..73), J=i..n), 1=1..n);
1 1 5 1

—(n+ D) +2m+Dn+—n+———n(n+1)Y—(n+1)°
2 ' ' 3 6 2 | |

1 1

, 3 5
+—(n+1)y ——n
6 L E .-}

> factor (simplify (%)) ;

1
—(n+2)n(n+1)
6



We get same answer if we sum from O
to n-1, instead of 1 to n

factor(simplifv(sum{sum(sum{(l k=i. .3}, J=i..n},
i=1. .n})));

Rin+21n+1)
&

factor(simplifv(sum{sum(sum(l k=i..j},3J=1i. .n-1},
i=0. . n-1)}));

Rin+21n+1)
&




Interlude

» Computer Science is ho more about
computers than astronomy is about

Donald Knuth




Interlude

» Computer Science is ho more about
computers than astronomy is about
telescopes.

Donald Knuth



Fun tangent

Observe that 2Dm+2) _ (n _:,: 2),

from basic counting/probability

» The textbook makes use of this in a curious
way to find the sum more easily. Fun, but not
required for class.



Where do we stand?

» We showed MCSS is O(n3).

- Showing that a problem is O(g(n)) is relatively easy - just
analyze a known algorithm.

» Is MCSS Q(n3)?

- Showing that a problem is Q (g(n)) is much tougher. How do
you prove that it is impossible to solve a problem more
quickly than you already can?

f(n) is O(g(n)) if f(n) < cg(n) for all n = n,
o Or maybe we can find |- so0 gives an upper bound
a faster algorithm? f(n) is Q(g(n)) if f(n) = cg(n) for all n = n,
- So Q gives a lower bound
f(n) is 6(g(n)) if c;g(n) < f(n) < c,g(n) for all n = n,
> So 6 gives a tight bound
> f(n) is 6(g(n)) if it is both O(g(n)) and Q(g(n))




What is the main source of the simple
algorithm’s inefficiency?

//In the analys1is we uge "n" as a shorthand for "a.length "
for{( int 1 = 0; 1 <€ a.length; i++ )
for( int 3 = 1i; jJ < a.length; j++ ) {
int thisSum = 0;

for( int k = i; k <= j; k++ )
thisSum += a[ k ];

» The performance is bad!




Eliminate the most obvious
inefficiency...

for{ int 1 = 0; 1 < a.length; 1i++ )} {
int thiss5um = 07
for{ int J =1i; 7 < a.length; j++ ) {
this5um += a[ J ]:;

1f{ this5um > maxSum } {
maxsSum = thisSum;
segstart 1;
seqgbEnd I

_— This is O(?)




MCSS is O(n?)

» Is MCSS 6(n?4)?

> Showing that a problem is Q (g(n)) is much tougher. How do
you prove that it is impossible to solve a problem more
quickly than you already can?

- Can we find a yet faster algorithm?

f(n) is O(g(n)) if f(n) < cg(n) for all n = n,

> So O gives an upper bound

f(n) is Q(g(n)) if f(n) = cg(n) for all n = n,

- So Q gives a lower bound

f(n) is 6(g(n)) if c;g(n) < f(n) < c,g(n) for all n = n,
> So 6 gives a tight bound

> f(n) is 6(g(n)) if it is both O(g(n)) and Q(g(n))







