

Maximum Contiguous Subsequence Sum

After today's class you will be able to:

state and solve the MCSS problem on small arrays by observation find the exact runtimes of the naive MCSS algorithms

Reminder of good code style

Good comments:

- Javadoc comments for public fields and methods.
- Internal comments for anything that is not obvious.
- Good variable and method names:
 - Eclipse has name completion (ALT /), so the "typing cost" of using long names is small
- Use local variables and static methods (instead of fields and non-static methods) where appropriate
 - "where appropriate" includes any place where you can't explicitly justify creating instance fields
- No super-long lines of code
- No super-long methods: use top down design
- Consistent indentation (ctrl-shift f)
- Blank lines between methods, space after punctuation

Review: Limits and Asymptotics

Consider the limit

$$\lim_{n \to \infty} \frac{f(n)}{g(n)}$$

- What does it say about asymptotic relationship between f and g if this limit is...
 - 0?
 - finite and non-zero?
 - infinite?

Apply this limit property to the following pairs of functions

1. n and n^2

2. log n and n (on these questions and solutions ONLY, let log n mean natural log)

- 3. n log n and n^2
- 4. $\log_a n$ and $\log_b n$ (a < b)
- 5. n^{a} and a^{n} (a > =1)

6. a^n and b^n (a < b) Recall l'Hôpital's rule:

Recall l'Hôpital's rule: under appropriate conditions,

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

Q13-15

Maximum Contiguous Subsequence Sum

A deceptively deep problem with a surprising solution.

Why do we look at this problem?

It's interesting

- Analyzing the obvious solution is instructive
- We can make the program more efficient

A Nice Algorithm Analysis Example

Problem: Given a sequence of numbers, find the maximum sum of a contiguous subsequence.

Consider:

- What if all the numbers were positive?
- What if they all were negative?
- What if we left out "contiguous"?

Formal Definition: Maximum Contiguous Subsequence Sum

Problem definition: Given a non-empty sequence of *n* (possibly negative) integers $A_1, A_2, ..., A_n$, find the maximum consecutive subsequence $S_{i,j} = \sum_{k=i}^{j} A_k$, and the corresponding values of *i* and *j*.

If every element is negative, what's the MCSS?

1-based indexing

Q5

A quick-and-dirty algorithm

- Design one right now.
 - Efficiency doesn't matter.
 - It has to be easy to understand.
 - 3 minutes
- Examples to consider:

{5, 6, -3, 2, 8, 4, -12, 7, 2}

Analysis of this Algorithm

- What statement is executed the most often?
- How many times?
- How many triples, (i,j,k) with 1≤i≤k≤j≤n ?

//In the analysis we use "n" as a shorthand for "a length "
for(int i = 0; i < a.length; i++)
for(int j = i; j < a.length; j++) {
 int thisSum = 0;
 for(int k = i; k <= j; k++)
 thisSum += a[k];</pre>

Outer numbers could be 0 and n - 1, and we'd still get the same answer.

How to find the exact sum

- By hand
- Using Maple

Counting is (surprisingly) hard!

Q6, Q7

- How many triples, (i,j,k) with 1≤i≤k≤j≤n?
- What is that as a summation?

Let's solve it by hand to practice with sums

Simplify the sum

When it gets down to "just Algebra", Maple is our friend

Help from Maple, part 1

Simplifying the last step of the monster sum

> simplify((n^2+3*n+2)/2*n

- (n+3/2) *n* (n+1) /2+1/2*n* (n+1) * (2*n+1) /6) ;

$$\frac{1}{6}n^3 + \frac{1}{2}n^2 + \frac{1}{3}n$$

> factor(%);

$$\frac{1}{6}(n+2)n(n+1)$$

Help from Maple, part 2

Letting Maple do the whole thing for us: sum(sum(sum(1, k=i..j), j=i..n), i=1..n); $\frac{1}{2}(n+1)n^{2}+2(n+1)n+\frac{1}{3}n+\frac{5}{6}-\frac{1}{2}n(n+1)^{2}-(n+1)^{2}$ $+\frac{1}{6}(n+1)^3 - \frac{1}{2}n^2$ > factor(simplify(%)); $\frac{1}{6}(n+2)n(n+1)$

We get same answer if we sum from 0 to n-1, instead of 1 to n

factor(simplify(sum(sum(sum(1,k=i..j), j=i..n), i=1..n)));

 $\frac{n(n+2)(n+1)}{6}$ factor(simplify(sum(sum(sum(1,k=i...j),j=i...n-1),

i=0..n-1)));

$$\frac{n\left(n+2\right)\left(n+1\right)}{6}$$

Interlude

 Computer Science is no more about computers than astronomy is about _____

Donald Knuth

Interlude

 Computer Science is no more about computers than astronomy is about <u>telescopes</u>.

Donald Knuth

Fun tangent

Observe that $\frac{n(n+1)(n+2)}{6} = \binom{n+2}{3}$, from basic counting/probability

The textbook makes use of this in a curious way to find the sum more easily. Fun, but not required for class.

Where do we stand?

- We showed MCSS is O(n³).
 - Showing that a problem is O(g(n)) is relatively easy just analyze a known algorithm.

• Is MCSS $\Omega(n^3)$?

- Showing that a problem is Ω (g(n)) is much tougher. How do you prove that it is impossible to solve a problem more quickly than you already can?
- Or maybe we can find a faster algorithm?

 $\begin{array}{l} f(n) \text{ is } O(g(n)) \text{ if } f(n) \leq cg(n) \text{ for all } n \geq n_0 \\ \circ \text{ So } O \text{ gives an upper bound} \\ f(n) \text{ is } \Omega(g(n)) \text{ if } f(n) \geq cg(n) \text{ for all } n \geq n_0 \\ \circ \text{ So } \Omega \text{ gives a lower bound} \\ f(n) \text{ is } \theta(g(n)) \text{ if } c_1g(n) \leq f(n) \leq c_2g(n) \text{ for all } n \geq n_0 \\ \circ \text{ So } \theta \text{ gives a tight bound} \\ \circ \text{ f(n) is } \theta(g(n)) \text{ if it is both } O(g(n)) \text{ and } \Omega(g(n)) \end{array}$

What is the main source of the simple algorithm's inefficiency?

//In the analysis we use "n" as a shorthand for "a length "
for (int i = 0; i < a.length; i++)
for (int j = i; j < a.length; j++) {
 int thisSum = 0;
 for (int k = i; k <= j; k++)
 thisSum += a[k];</pre>

The performance is bad!

Eliminate the most obvious inefficiency...

}

]

- for(int i = 0; i < a.length; i++) {
 int thisSum = 0;
 for(int j = i; j < a.length; j++) {
 thisSum += a[j];</pre>
 - if(thisSum > maxSum) {
 maxSum = thisSum;
 seqStart = i;
 seqEnd = j;

MCSS is O(n²)

• Is MCSS $\theta(n^2)$?

- Showing that a problem is Ω (g(n)) is much tougher. How do you prove that it is impossible to solve a problem more quickly than you already can?
- Can we find a yet faster algorithm?

 $\begin{array}{l} f(n) \text{ is } O(g(n)) \text{ if } f(n) \leq cg(n) \text{ for all } n \geq n_0 \\ \circ \text{ So O gives an upper bound} \\ f(n) \text{ is } \Omega(g(n)) \text{ if } f(n) \geq cg(n) \text{ for all } n \geq n_0 \\ \circ \text{ So } \Omega \text{ gives a lower bound} \\ f(n) \text{ is } \theta(g(n)) \text{ if } c_1g(n) \leq f(n) \leq c_2g(n) \text{ for all } n \geq n_0 \\ \circ \text{ So } \theta \text{ gives a tight bound} \\ \circ \text{ f(n) is } \theta(g(n)) \text{ if it is both } O(g(n)) \text{ and } \Omega(g(n)) \end{array}$

Can we do even better?

Tune in next time for the exciting conclusion!

http://www.etsu.edu/math/gardner/batman