

After today's class you will be able to:
state and solve the MCSS problem on small arrays by observation find the exact runtimes of the naive MCSS algorithms

Reminder of good code style

, Good comments:

- Javadoc comments for public fields and methods.
- Internal comments for anything that is not obvious.
- Good variable and method names:
- Eclipse has name completion (ALT /), so the "typing cost" of using long names is small
- Use local variables and static methods (instead of fields and non-static methods) where appropriate - "where appropriate" includes any place where you can't explicitly justify creating instance fields
- No super-long lines of code
- No super-long methods: use top down design
- Consistent indentation (ctrl-shift f)

Blank lines between methods, space after punctuation

Review: Limits and Asymptotics

- Consider the limit

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}
$$

- What does it say about asymptotic relationship between f and g if this limit is...
- 0 ?
- finite and non-zero?
- infinite?

Apply this limit property to the following pairs of functions

1. n and n^{2}
2. $\log \mathrm{n}$ and n (on these questions and solutions

ONLY, let log n mean natural log)
3. $n \log n$ and n^{2}
4. $\log _{a} n$ and $\log _{b} n \quad(a<b)$
5. n^{a} and $\mathrm{a}^{\mathrm{n}}(\mathrm{a}>=1)$
6. a^{n} and $b^{n}(a<b)$

Recall I'Hôpital's rule:
under appropriate conditions,

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
$$

Q1

Maximum Contiguous Subsequence Sum

A deceptively deep problem with a surprising solution.

$$
\{-3,4,2,1,-8,-6,4,5,-2\}
$$

Why do we look at this problem?

- It's interesting
- Analyzing the obvious solution is instructive
- We can make the program more efficient

A Nice Algorithm Analysis Example

- Problem: Given a sequence of numbers, find the maximum sum of a contiguous subsequence.

Consider:

- What if all the numbers were positive?

- What if they all were negative?
- What if we left out "contiguous"?

Formal Definition: Maximum Contiguous Subsequence Sum

Problem definition: Given a non-empty
sequence of n (possibly negative) integers
$A_{1}, A_{2}, \ldots, A_{n}$, find the maximum consecutive
subsequence $S_{i, j}=\sum_{k=i}^{j} A_{k}$, and the
corresponding values of i and j.

- $\operatorname{In}\{-2,11,-4,13,-5,2\}, S_{2,4}=$?
- In $\{1,-3,4,-2,-1,6\}$, what is MCSS?
, If every element is negative, what's the MCSS?

1-based indexing

A quick-and-dirty algorithm

- Design one right now.
- Efficiency doesn't matter.
- It has to be easy to understand.
- 3 minutes
- Examples to consider:
- $\{-3,4,2,1,-8,-6,4,5,-2\}$
- $\{5,6,-3,2,8,4,-12,7,2\}$

First Algorithm

Find the sums of

 al/ subsequencespublic final class MaxSubTest \{ private static int seqStart $=0$; private static int seqEnd $=0$;
/* First maximum contiguous subsequence sum algorithm. * seqStart and seqEnd represent the actual best sequence. */
public static int maxSubSum1 (int [] a) \{
i: beginning of
subsequence int maxSum $=0$;
//In the analysis we use " n " as a shorthand for "a. length

$$
\text { for (int } i=0 ; i<a . l e n g t h ; i++)
$$

 subsequence

$$
\begin{aligned}
\text { if }(\text { thisSum } & >\text { maxSum })\{ \\
\text { maxSum } & =\text { thisSum; }
\end{aligned}
$$

seqStart $=i$;
seqEnd $=j$;
\}
\}
return maxSum; \}

How many times (exactly, as a function of $\mathrm{N}=$ a.length) will that statement execute?

Analysis of this Algorithm

- What statement is executed the most often?
, How many times?
, How many triples, ($\mathbf{i}, \mathbf{j}, \mathbf{k}$) with $\mathbf{1} \leq \mathbf{i} \leq \mathbf{k} \leq \mathbf{j} \leq \mathbf{n}$?
//In the analysis we use " n " as a shorthand for "a .length "
for (int $i=0 ; i<a . l e n g t h ; i++$)
for (int $j=i ; j<a . l e n g t h ; ~ j++) ~\{$ int thisSum $=0$;
for (int $k=i ; k<=j ; k++$) thisSum += alk];

How to find the exact sum

- By hand
- Using Maple

Counting is (surprisingly) hard!
, How many triples, ($\mathbf{i}, \mathbf{j}, \mathbf{k}$) with $\mathbf{l} \leq \mathbf{i} \leq \mathbf{k} \leq \mathbf{j} \leq \mathbf{n}$?

- What is that as a summation?

- Let's solve it by hand to practice with sums

Simplify the sum

- When it gets down to "just Algebra", Maple is our friend

Help from Maple, part 1

Simplifying the last step of the monster sum
$>$ simplify $\left(\left(n^{\wedge} 2+3 * n+2\right) / 2 * n\right.$
$-(n+3 / 2) * n *(n+1) / 2+1 / 2 * n *(n+1) *(2 * n+1) / 6)$;

$$
\frac{1}{6} n^{3}+\frac{1}{2} n^{2}+\frac{1}{3} n
$$

$>$ factor (8) ;

$$
\frac{1}{6}(n+2) n(n+1)
$$

Help from Maple, part 2

Letting Maple do the whole thing for us:
sum (sum (sum (1, k=i..j), j=i..n), i=1..n);
$\frac{1}{2}(n+1) n^{2}+2(n+1) n+\frac{1}{3} n+\frac{5}{6}-\frac{1}{2} n(n+1)^{2}-(n+1)^{2}$

$$
+\frac{1}{6}(n+1)^{3}-\frac{1}{2} n^{2}
$$

$>$ factor (simplify(8)) ;

$$
\frac{1}{6}(n+2) n(n+1)
$$

We get same answer if we sum from 0 to $n-1$, instead of 1 to n

factor (simplify(sum(sum(sum(1,k=i..j), j=i..n), $\mathbf{i}=\mathbf{1}$. . \mathbf{n})));

$$
\frac{n(n+2)(n+1)}{6}
$$

factor(simplify(sum(sum(sum(1,k=i..j), j=i..n-1), $\mathbf{i}=0 . . \mathbf{n}-\mathbf{1})$) ;

$$
\frac{n(n+2)(n+1)}{6}
$$

Interlude

Computer Science is no more about computers than astronomy is about \qquad

Donald Knuth

Interlude

- Computer Science is no more about computers than astronomy is about telescopes.

Donald Knuth

Fun tangent

Observe that $\frac{n(n+1)(n+2)}{6}=\binom{n+2}{3}$,
from basic counting/probability

- The textbook makes use of this in a curious way to find the sum more easily. Fun, but not required for class.

Where do we stand?

- We showed MCSS is $O\left(n^{3}\right)$.
- Showing that a problem is $\mathrm{O}(\mathrm{g}(\mathrm{n})$) is relatively easy - just analyze a known algorithm.
- Is MCSS $\Omega\left(n^{3}\right)$?
- Showing that a problem is $\Omega(\mathrm{g}(\mathrm{n}))$ is much tougher. How do you prove that it is impossible to solve a problem more quickly than you already can?
- Or maybe we can find

```
f(n) is O(g(n)) if f(n) \leqcg(n) for all n\geq n
    So O gives an upper bound
f(n) is \Omega(g(n)) if f(n) \geqcg(n) for all n \geq no
    So }\Omega\mathrm{ gives a lower bound
f(n) is 0(g(n)) if c
    So 0 gives a tight bound
    f(n) is 0(g(n)) if it is both O(g(n)) and \Omega(g(n))
```

What is the main source of the simple algorithm's inefficiency?
//In the analysis we use " n " as a shorthand for "a.length " for (int $i=0 ; i<a . l e n g t h ; i++$)
for (int j $=1 ; j<a . l e n g t h ; j++$) \{ int thisSum $=0$;

$$
\begin{aligned}
& \text { for (int } k=i ; k<=j ; k++) \\
& \quad \text { thisSum +=a[k]; }
\end{aligned}
$$

- The performance is bad!

Eliminate the most obvious inefficiency...

for (int $i=0 ; i<a . l e n g t h ; i++\}$ (int thisSmm $=0$;
for (int $\mathbf{j}=\mathbf{i} ; \mathbf{j}$ (a.length; j++) (thisSum += a[j];
if (thisSum $>$ maxSum) \{ maxSum = thisSum;
seqStart $=1$; seqEnd $=\mathbf{j}$;
)
)

MCSS is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

- Is MCSS $\theta\left(\mathrm{n}^{2}\right)$?
- Showing that a problem is $\Omega(\mathrm{g}(\mathrm{n}))$ is much tougher. How do you prove that it is impossible to solve a problem more quickly than you already can?
- Can we find a yet faster algorithm?

$$
\begin{aligned}
& f(n) \text { is } O(g(n)) \text { if } f(n) \leq c g(n) \text { for all } n \geq n_{0} \\
& \text { So } O \text { gives an upper bound } \\
& f(n) \text { is } \Omega(g(n)) \text { if } f(n) \geq c g(n) \text { for all } n \geq n_{0} \\
& \text { So } \Omega \text { gives a lower bound } \\
& f(n) \text { is } \theta(g(n)) \text { if } c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for all } n \geq n_{0} \\
& \text { So } \theta \text { gives a tight bound } \\
& f(n) \text { is } \theta(g(n)) \text { if it is both } O(g(n)) \text { and } \Omega(g(n))
\end{aligned}
$$

Can we do even better?

Tune in next time for the exciting conclusion!

