
Growable Arrays Continued

Big-Oh and its cousins

Answer Q1 from today's in-class quiz.

 You will not usually need the textbook in
class

 Tuesday is Tie day (or “Professional Attire”
day)
◦ +1 on in-class quiz each time you come to class so

attired

◦ Building this habit is worth the points to me

◦ Short but intense! ~45 lines of code total in our
solutions to all but Adder

◦ Be sure to read the description of how it will be
graded

◦ Demo: Running the JUnit tests for test, file,
package, and project

Demo: Run the Adder program

 Finish course intro
 Growable Array recap
 Big-Oh and cousins

 After today, you’ll be able to
◦ Use the term amortized appropriately in analysis

◦ explain the meaning of big-Oh, big-Omega (W), and
big-Theta (q)

◦ apply the definition of big-Oh to prove runtimes of
functions

◦ use limits to show that a function is O, q, or W of
another function.

 See syllabus for exam weighting and caveats.

 Note: Exam 1.5 (new this term)
◦ Extra exam practice added to HW4.

 About Homework 1?
◦ Aim to complete tonight, since it is due Friday night

◦ It is substantial (in amount of work, and in course
credit)

 About the Syllabus?

Q2-3

Daring to double

 Doubling each time:
◦ Assume that N = 5 (2k) + 1.

 Total # of array elements copied:

k N #copies

0 6 5

1 11 5 + 10 = 15

2 21 5 + 10 + 20 = 35

3 41 5 + 10 + 20 + 40 = 75

4 81 5 + 10 + 20 + 40 + 80 = 155

k = 5 (2k) + 1 5(1 + 2 + 4 + 8 + … + 2k)

Express as a closed-form expression in
terms of K, then express in terms of N

 Total # of array elements copied:

N #copies

6 5

7 5 + 6

8 5 + 6 + 7

9 5 + 6 + 7 + 8

10 5 + 6 + 7 + 8 + 9

N ???

Express as a closed-form
expression in terms of N

 What’s the average overhead cost of adding
an additional string…
◦ in the doubling case?

◦ in the add-one case?

 So which should we use?

Q4-5

This is called
the amortized
cost

Q6

x

Simplify: Note that log n (without a specified) base means log2n.

Also, log n is an abbreviation for log(n).

1. log (2 n log n)

2. log(n/2)

3. log (sqrt (n))

4. log (log (sqrt(n)))

5. log4 n

6. 22 log n

7. if n=23k - 1, solve for k.

Where do logs come from in algorithm analysis?

Simplify: Note that log n (without a specified) base means log2n.

Also, log n is an abbreviation for log(n).

1. 1+log n + log log n

2. log n - 1

3. ½ log n

4. -1 + log log n

5. (log n) / 2

6. n2

7. n+1=23k

log(n+1)=3k

k= log(n+1)/3

A: Any time we cut things in half at each step
(like binary search or mergesort)

 Algorithms may have different time
complexity on different data sets

 What do we mean by "Worst Case"?

 What do we mean by "Average Case"?

 What are some application domains where
knowing the Worst Case time complexity
would be important?

 http://cacm.acm.org/magazines/2013/2/160173-the-tail-
at-scale/fulltext

http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext

Worst-case:
O(n)

amortized:
O(1)

Big-Oh

Big-Omega

Big-Theta

 We only care what happens when N gets large

 Is the function linear? quadratic?
exponential?

Figure 5.1
Running times for small inputs

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

(linear looks
constant for
small inputs)

Figure 5.2
Running times for moderate inputs

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 5.3
Functions in order of increasing growth rate

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

a.k.a "log linear"

 Drop lower order terms and constant factors

 7n – 3 is O(n)

 8n2logn + 5n2 + n is O(n2logn)

≥

Q7a

C > 0, n0 ≥ 0 and an integer

 A function f(n) is (in) O(g(n)) if there exist two

positive constants c and n0 such that for all n n0,
f(n) c g(n)

 So all we must do to prove that f(n) is O(g(n)) is
produce two such constants.

 f(n) = 4n + 15, g(n) = ???.

 f(n) = n + sin(n), g(n) = ???

Assume that all functions have non-negative
values, and that we only care about n≥0. For
any function g(n), O(g(n)) is a set of functions.

Q8-9

 f(n) is O(g(n)) if f(n) ≤ cg(n) for all n ≥ n0

◦ So O gives an upper bound

 f(n) is W(g(n)) if f(n) ≥ cg(n) for all n ≥ n0

◦ So W gives a lower bound

 f(n) is q(g(n)) if c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0

◦ So q gives a tight bound
◦ How are they all related? f(n) is q(g(n)) if it is …
◦ both O(g(n)) and W(g(n))
◦ We usually show algorithms are q(g(n)). Tomorrow, we’ll

also discuss how to show problems are q(g(n)).

 True or false: 3n+2 is O(n3)

 True or false: 3n+2 is Θ(n3)

Q7b,c, 10

 Give tightest bound you can
◦ Saying 3n+2 is O(n3) is true, but not as useful as

saying it’s O(n)

◦ On a test, we’ll ask for Θ to be clear.

 Simplify:
◦ You could also say: 3n+2 is O(5n-3log(n) + 17)

◦ And it would be technically correct…

◦ It would also be poor taste … and your grade will
reflect that.

 There are times when one might choose a
higher-order algorithm over a lower-order
one.

 Brainstorm some ideas to share with the class

Q11

 Suppose T1(N) is O(f(N)) and T2(N) is O(f(N)).
Prove that T1(N) + T2(N) is O(f(N))

 Hint: Constants c1 and c2 must exist for
T1(N) and T2(N) to be O(f(N))
◦ How can you use them?

 Try it before next class

 Consider the limit

 What does it say about asymptotic relationship
between f and g if this limit is…
◦ 0?

◦ finite and non-zero?

◦ infinite?

)(

)(
lim

ng

nf

n

Q12

1. n and n2

on these questions and solutions ONLY, let log n mean natural log

2. log n and n

3. n log n and n2

4. logan and logbn (a < b)

5. na and an (a > =1)

6. an and bn (a < b) Recall l’Hôpital’s rule:
under appropriate conditions,

Q13-15

