

CSSE 230 Day 2

Growable Arrays Continued Big-Oh and its cousins

Answer Q1 from today's in-class quiz.

Announcements

- You will not usually need the textbook in class
- Tuesday is Tie day (or "Professional Attire" day)
 - +1 on in-class quiz each time you come to class so attired
 - Building this habit is worth the points to me

Warm Up and Stretching thoughts

- Short but intense! ~45 lines of code total in our solutions to all but Adder
- Be sure to read the description of how it will be graded
- Demo: Running the JUnit tests for test, file, package, and project

Demo: Run the Adder program

Agenda and goals

- Finish course intro
- Growable Array recap
- Big-Oh and cousins
- After today, you'll be able to
 - Use the term *amortized* appropriately in analysis
 - explain the meaning of big-Oh, big-Omega (Ω), and big-Theta (θ)
 - apply the definition of big-Oh to prove runtimes of functions
 - $^\circ$ use limits to show that a function is O, $\theta,$ or Ω of another function.

You must demonstrate programming competence on exams to succeed

- See syllabus for exam weighting and caveats.
- Note: Exam 1.5 (new this term)
 - Extra exam practice added to HW4.

Questions?

- About Homework 1?
 - Aim to complete tonight, since it is due Friday night
 - It is substantial (in amount of work, and in course credit)
- About the Syllabus?

Growable Arrays Exercise Daring to double

Growable Arrays Table

Ν	$\mathbf{E}_{\mathbf{N}}$	Answers for problem 2
4	0	0
5	0	0
6	5	5
7	5	5 + 6 = 11
10	5	5 + 6 + 7 + 8 + 9 = 35
11	5 + 10 = 15	5 + 6 + 7 + 8 + 9 + 10 = 45
20	15	sum(i, i=519) = 180 using Maple
21	5 + 10 + 20 = 35	sum(i, i=520) = 180
40	35	sum(i, i=539) = 770
41	5 + 10 + 20 + 40 = 75	sum(i, i=540) = 810

Doubling the Size

- Doubling each time:
 - Assume that $N = 5 (2^k) + 1$.
- Total # of array elements copied:

k	Ν	#copies
0	6	5
1	11	5 + 10 = 15
2	21	5 + 10 + 20 = 35
3	41	5 + 10 + 20 + 40 = 75
4	81	5 + 10 + 20 + 40 + 80 = 155
k	$= 5 (2^k) + 1$	$5(1 + 2 + 4 + 8 + + 2^k)$

Express as a closed-form expression in terms of K, then express in terms of N

Adding One Each Time

Total # of array elements copied:

Conclusions

- What's the average overhead cost of adding an additional string...
 - in the doubling case?
 - in the add-one case?

This is called the **amortized** cost

So which should we use?

More math review

Review these as needed

- Logarithms and Exponents
 - properties of logarithms:

$$log_{b}(xy) = log_{b}x + log_{b}y$$
$$log_{b}(x/y) = log_{b}x - log_{b}y$$
$$log_{b}x^{\alpha} = \alpha log_{b}x$$
$$log_{b}x = \frac{log_{a}x}{log_{a}b}$$

- properties of exponentials:

$$a^{(b+c)} = a^{b}a^{c}$$
$$a^{bc} = (a^{b})^{c}$$
$$a^{b}/a^{c} = a^{(b-c)}$$
$$b = a^{\log_{a}b}$$
$$b^{c} = a^{c*\log_{a}b}$$

Practice with exponentials and logs (Do these with a friend after class, not to turn in)

Simplify: Note that $\log n$ (without a specified) base means $\log_2 n$. Also, $\log n$ is an abbreviation for $\log(n)$.

- **1.** log (2 n log n)
- 2. $\log(n/2)$
- **3.** log (sqrt (n))
- 4. log (log (sqrt(n)))

Where do logs come from in algorithm analysis?

Solutions No peeking!

Simplify: Note that $\log n$ (without a specified) base means $\log_2 n$. Also, log n is an abbreviation for $\log(n)$.

- 1. $1 + \log n + \log \log n$
- 2. log n 1
- 3. $\frac{1}{2} \log n$
- 4. $-1 + \log \log n$

5.
$$(\log n) / 2$$

6.
$$n^2$$

7.
$$n+1=2^{3k}$$

log(n+1)=3k

$$k = log(n+1)/3$$

A: Any time we cut things in half at each step (like binary search or mergesort)

Running Times

- Algorithms may have different time complexity on different data sets
- What do we mean by "Worst Case"?
- What do we mean by "Average Case"?
- What are some application domains where knowing the Worst Case time complexity would be important?
- http://cacm.acm.org/magazines/2013/2/160173-the-tailat-scale/fulltext

Average Case and Worst Case

Worst-case vs amortized cost for adding an element to an array using the doubling scheme

Asymptotics: The "Big" Three

Big-Oh Big-Omega Big-Theta

Asymptotic Analysis

> We only care what happens when N gets large

Is the function linear? quadratic? exponential?

Figure 5.1 Running times for small inputs

Figure 5.2 Running times for moderate inputs

Figure 5.3 Functions in order of increasing growth rate

Function	Name
с	Constant
$\log N$	Logarithmic
$\log^2 N$	Log-squared
Ν	Linear
$N \log N$	N log N (a.k.a "log linear"
N ²	Quadratic
N ³	Cubic
2^N	Exponential

Simple Rule for Big-Oh

Drop lower order terms and constant factors

- ▶ 7n 3 is O(n)
- $\mathbf{N} = \mathbf{N}^2 + \mathbf{n} + \mathbf{n}$

0

The "Big-Oh" Notation

- given functions f(n) and g(n), we say that f(n) is O(g(n)) if and only if $f(n) \le c g(n)$ for $n \ge n_0$
- c and *n*₀ are constants, f(*n*) and g(*n*) are functions over non-negative integers

 $C>0,\,n_0\geq 0$ and an integer

Big Oh examples

- A function f(n) is (in) O(g(n)) if there exist two positive constants c and n₀ such that for all n≥ n₀, f(n) ≤ c g(n)
- So all we must do to prove that f(n) is O(g(n)) is produce two such constants.
- f(n) = 4n + 15, g(n) = ???.

•
$$f(n) = n + sin(n), g(n) = ???$$

Assume that all functions have non-negative values, and that we only care about $n \ge 0$. For any function g(n), O(g(n)) is a set of functions.

Big-Oh, Big-Theta and Big-Omega

- f(n) is O(g(n)) if $f(n) \le cg(n)$ for all $n \ge n_0$
 - So O gives an upper bound
- f(n) is $\Omega(g(n))$ if $f(n) \ge cg(n)$ for all $n \ge n_0$
 - $\circ~$ So Ω gives a lower bound
- f(n) is $\theta(g(n))$ if $c_1g(n) \le f(n) \le c_2g(n)$ for all $n \ge n_0$
 - So θ gives a tight bound
 - How are they all related? f(n) is $\theta(g(n))$ if it is ...
 - both O(g(n)) and $\Omega(g(n))$
 - We usually show algorithms are $\theta(g(n))$. Tomorrow, we'll also discuss how to show **problems** are $\theta(g(n))$.
- True or false: 3n+2 is $O(n^3)$
- True or false: 3n+2 is $\Theta(n^3)$

Big-Oh Style

Give tightest bound you can

- Saying 3*n*+2 is O(*n*³) is true, but not as useful as saying it's O(*n*)
- On a test, we'll ask for Θ to be clear.
- Simplify:
 - You could also say: 3n+2 is $O(5n-3\log(n) + 17)$
 - And it would be technically correct...
 - It would also be poor taste ... and your grade will reflect that.

Limitations of big-Oh

- There are times when one might choose a higher-order algorithm over a lower-order one.
- Brainstorm some ideas to share with the class

On homework 2...

Suppose $T_1(N)$ is O(f(N)) and $T_2(N)$ is O(f(N)). **Prove** that $T_1(N) + T_2(N)$ is O(f(N))

 Hint: Constants c1 and c2 must exist for T₁(N) and T₂(N) to be O(f(N))

• How can you use them?

Try it before next class

Limits and Asymptotics

Consider the limit

$$\lim_{n \to \infty} \frac{f(n)}{g(n)}$$

- What does it say about asymptotic relationship between f and g if this limit is...
 - 0?
 - finite and non-zero?
 - infinite?

Apply this limit property to the following pairs of functions

1. n and n^2

on these questions and solutions ONLY, let log n mean natural log

- 2. log n and n
- 3. $n \log n \text{ and } n^2$
- 4. $\log_a n$ and $\log_b n$ (a < b)
- 5. n^{a} and a^{n} (a > =1)
- 6. a^n and b^n (a < b)

Recall l'Hôpital's rule: under appropriate conditions,

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

Q13-15