
Sorting Lower Bound 
Radix Sort 

 

http://www.cs.auckland.ac.nz/software/AlgAnim/radixsort.html 

What is the min height of a 
tree with X external nodes? 

Radix sort to the rescue … sort of… 

http://www.cs.auckland.ac.nz/software/AlgAnim/radixsort.html


 EditorTree evals due last night – late is better 
than never on these, though! 
 

 Questions on WA8? 
 

 Demo of Doublets 
◦ Ask questions 



We can’t do much better than 
what we already know how to 
do. 



 Lower bound for best case? 
 

 A particular algorithm that achieves this? 



 Want a function f(N)  
such that the worst case running time  
for all sorting algorithms is Ω(f(N)) 
 

 How do we get a handle on 
“all sorting algorithms”? 

Tricky! 



 We can’t list all sorting algorithms and 
analyze all of them 
◦ Why not? 
 

 But we can find a uniform representation of 
any sorting algorithm that is based on 
comparing elements of the array to each 
other 



 The problem of sorting N elements is at least 
as hard as determining their ordering 
◦ e.g.,  determining that a3 < a4 < a1 < a5 < a2 
◦ sorting = determining order, then movement 

 
 So any lower bound on all "order-

determination" algorithms is also a lower 
bound on "all sorting algorithms" 
 



 Let A be any comparison-based algorithm for 
sorting an array of distinct elements 

 Note: sorting is asymptotically equivalent to 
determining the correct order of the originals 

 We can draw an EBT that corresponds to the 
comparisons that will be used by A to sort an 
array of N elements 
◦ This is called a sort decision tree 
◦ Just a pen-and-paper concept, not actually a data 

structure 
◦ Different algorithms will have different trees 

Q1 



 Minimum number of external nodes in a sort 
decision tree?  (As a function of N) 

 
 Is this number dependent on the algorithm?  

 
 What’s the height of the shortest EBT with 

that many external nodes? 
 
 
 No comparison-based sorting algorithm, 
known or not yet discovered, can ever do 

better than this! 

Q2-4 



 Ω(N log N) is the best we can do if we 
compare items 
 

 Can we sort without comparing items? 



 O(N) sort:  Bucket sort 
◦ Works if possible values come from limited range 
◦ Example: Exam grades histogram 

 
 A variation:  Radix sort 

 

Q5 



 A picture is worth 103 words, but an 
animation is worth 210 pictures, so we will 
look at one. 

 http://www.cs.auckland.ac.nz/software/AlgA
nim/radixsort.html  

Q6-7 

http://www.cs.auckland.ac.nz/software/AlgAnim/radixsort.html
http://www.cs.auckland.ac.nz/software/AlgAnim/radixsort.html


 It is O(kn) 
◦ Looking back at the radix sort algorithm, what is k? 

 
 Look at some extreme cases: 
◦ If all integers in range 0-100 (so many duplicates if 

N is large),m then k = _____ 
 
◦ If all N integers are distinct, k = ____ 

Q8-10 



 

Used an appropriate 
combo of 
mechanical, digital, 
and human effort to 
get the job done. 

http://en.wikipedia.org/wiki/IBM_card_sorter 


	CSSE 230 Day 24
	Announcements
	A Lower-Bound�on Sorting Time
	What’s the best best case?
	What’s the best worst case?
	What are “all sorting algorithms”?
	First of all…
	Sort Decision Trees
	So what?
	Can we do better than N log N?
	Yes, we can! We can avoid comparing items and still sort. This is fast if the range of data is small.
	Radix sort
	RadixSort is almost O(n)
	Radix sort example: card sorter

