

What is the min height of a tree with X external nodes?

CSSE 230 Day 24 Sorting Lower Bound Radix Sort

Radix sort to the rescue ... sort of...

Announcements

- EditorTree evals due last night - late is better than never on these, though!

Questions on WA8?

Demo of Doublets

- Ask questions

A Lower-Bound on Sorting Time

 We can't do much better than what we already know how to do.
What's the best best case?

- Lower bound for best case?
- A particular algorithm that achieves this?

What's the best worst case?

- Want a function f(N) such that the worst case running time for all sorting algorithms is $\Omega(f(N))$
- How do we get a handle on "all sorting algorithms"?

What are "all sorting algorithms"?

- We can't list all sorting algorithms and analyze all of them
- Why not?
- But we can find a uniform representation of any sorting algorithm that is based on comparing elements of the array to each other

First of all...

The problem of sorting N elements is at least as hard as determining their ordering

- e.g., determining that $a_{3}<a_{4}<a_{1}<a_{5}<a_{2}$
- sorting $=$ determining order, then movement
- So any lower bound on all "orderdetermination" algorithms is also a lower bound on "all sorting algorithms"

Sort Decision Trees

- Let A be any comparison-based algorithm for sorting an array of distinct elements
- Note: sorting is asymptotically equivalent to determining the correct order of the originals
- We can draw an EBT that corresponds to the comparisons that will be used by A to sort an array of N elements
- This is called a sort decision tree
- Just a pen-and-paper concept, not actually a data structure
- Different algorithms will have different trees

So what?

- Minimum number of external nodes in a sort decision tree? (As a function of N)
- Is this number dependent on the algorithm?
- What's the height of the shortest EBT with that many external nodes?

$$
\lceil\log N!\rceil \approx N \log N-1.44 N=\Omega(N \log N)
$$

No comparison-based sorting algorithm, known or not yet discovered, can ever do better than this!

Can we do better than $N \log N$?

- $\Omega(N \log N)$ is the best we can do if we compare items
- Can we sort without comparing items?

Yes, we can! We can avoid comparing items and Q5 still sort. This is fast if the range of data is small.
$\mathrm{O}(\mathrm{N})$ sort: Bucket sort

- Works if possible values come from limited range
- Example: Exam grades histogram
- A variation: Radix sort

Radix sort

- A picture is worth 10^{3} words, but an animation is worth 2^{10} pictures, so we will look at one.
- http://www.cs.auckland.ac.nz/software/AlgA nim/radixsort.html

RadixSort is almost $\mathrm{O}(\mathrm{n})$

- It is $\mathrm{O}(\mathrm{kn})$
- Looking back at the radix sort algorithm, what is k ?
- Look at some extreme cases:
- If all integers in range 0-100 (so many duplicates if N is large), m then $\mathrm{k}=$
- If all N integers are distinct, $\mathrm{k}=$

Radix sort example: card sorter

Used an appropriate

 combo of mechanical, digital, and human effort to get the job done.

Type 82 Electric Punched Card Sorting Machine
http://en.wikipedia.org/wiki/IBM_card_sorter

