
Sorting Lower Bound 
Radix Sort 

 

http://www.cs.auckland.ac.nz/software/AlgAnim/radixsort.html 

What is the min height of a 
tree with X external nodes? 

Radix sort to the rescue … sort of… 

http://www.cs.auckland.ac.nz/software/AlgAnim/radixsort.html


 EditorTree evals due last night – late is better 
than never on these, though! 
 

 Questions on WA8? 
 

 Demo of Doublets 
◦ Ask questions 



We can’t do much better than 
what we already know how to 
do. 



 Lower bound for best case? 
 

 A particular algorithm that achieves this? 



 Want a function f(N)  
such that the worst case running time  
for all sorting algorithms is Ω(f(N)) 
 

 How do we get a handle on 
“all sorting algorithms”? 

Tricky! 



 We can’t list all sorting algorithms and 
analyze all of them 
◦ Why not? 
 

 But we can find a uniform representation of 
any sorting algorithm that is based on 
comparing elements of the array to each 
other 



 The problem of sorting N elements is at least 
as hard as determining their ordering 
◦ e.g.,  determining that a3 < a4 < a1 < a5 < a2 
◦ sorting = determining order, then movement 

 
 So any lower bound on all "order-

determination" algorithms is also a lower 
bound on "all sorting algorithms" 
 



 Let A be any comparison-based algorithm for 
sorting an array of distinct elements 

 Note: sorting is asymptotically equivalent to 
determining the correct order of the originals 

 We can draw an EBT that corresponds to the 
comparisons that will be used by A to sort an 
array of N elements 
◦ This is called a sort decision tree 
◦ Just a pen-and-paper concept, not actually a data 

structure 
◦ Different algorithms will have different trees 

Q1 



 Minimum number of external nodes in a sort 
decision tree?  (As a function of N) 

 
 Is this number dependent on the algorithm?  

 
 What’s the height of the shortest EBT with 

that many external nodes? 
 
 
 No comparison-based sorting algorithm, 
known or not yet discovered, can ever do 

better than this! 

Q2-4 



 Ω(N log N) is the best we can do if we 
compare items 
 

 Can we sort without comparing items? 



 O(N) sort:  Bucket sort 
◦ Works if possible values come from limited range 
◦ Example: Exam grades histogram 

 
 A variation:  Radix sort 

 

Q5 



 A picture is worth 103 words, but an 
animation is worth 210 pictures, so we will 
look at one. 

 http://www.cs.auckland.ac.nz/software/AlgA
nim/radixsort.html  

Q6-7 

http://www.cs.auckland.ac.nz/software/AlgAnim/radixsort.html
http://www.cs.auckland.ac.nz/software/AlgAnim/radixsort.html


 It is O(kn) 
◦ Looking back at the radix sort algorithm, what is k? 

 
 Look at some extreme cases: 
◦ If all integers in range 0-100 (so many duplicates if 

N is large),m then k = _____ 
 
◦ If all N integers are distinct, k = ____ 

Q8-10 



 

Used an appropriate 
combo of 
mechanical, digital, 
and human effort to 
get the job done. 

http://en.wikipedia.org/wiki/IBM_card_sorter 
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