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Quicksort algorithm
Average case analysis
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Stacksort connects to StackOverflow, searches for “sort a list”, 
and downloads and runs code snippets until the list is sorted.
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 For any recurrence relation of the form:

with

 The solution is:

 Note: Replace O with everywhere in the 
theorem!

Theorem 7.5 in Weiss

Q1-3

 Check out now:
◦ www.sorting-algorithms.com

 http://maven.smith.edu/~thiebaut/java/sort/
demo.html

 http://www.cs.ubc.ca/~harrison/Java/sorting
-demo.html
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 Invented by C.A.R. “Tony” Hoare in 1961*
 Very widely used
 Somewhat complex, but fairly easy to 

understand
◦ Like in basketball, it’s all 

about planting a good pivot.

Image from http://www.ultimate-youth-basketball-guide.com/pivot-foot.html. 

A quote from Tony Hoare:
There are two ways of constructing a 
software design: One way is to make it 
so simple that there are obviously no 
deficiencies, and the other way is to 
make it so complicated that there are 
no obvious deficiencies. The first 
method is far more difficult.
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Q4

// Assume min and max indices are low and high
pivot = a[low]
i = low+1, j = high

while (true) {
while (a[i] < pivot) i++
while (a[j] > pivot) j‐‐
if (i >= j) break
swap(a, i, j)

}
swap(a, low, j) // moves the pivot to the

// correct place

return j

Q5
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 Running time for partition of N elements is (N)
 Quicksort Running time: 
◦ call partition.  Get two subarrays of sizes NL and NR

(what is the relationship between NL, NR, and N?)
◦ Then Quicksort the smaller parts
◦ T(N) = N + T(NL) + T(NR)

 Quicksort Best case: write and solve the recurrence
 Quicksort Worst case: write and solve the 

recurrence
 average: a little bit trickier
◦ We have to be careful how we measure

Q6-7

 Let T(N) be the average # of comparisons of 
array elements needed to quicksort N 
elements.

 What is T(0)?  T(1)?
 Otherwise T(N) is the sum of
◦ time for partition
◦ average time to  quicksort left part:  T(NL)
◦ average time to quicksort right part: T(NR)

 T(N) = N + T(NL) + T(NR)
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 Weiss shows how not to count it:
 What if half of the time  we picked the smallest 

element as the partitioning element and the other 
half of the time we picked the largest?

 Then on the average, NL = N/2 and NR =N/2, 
◦ but that doesn’t give a true picture of these worst-case 

scenarios.
◦ In every case, either NL = N-1 or NR =N-1

 We always need to make some kind of 
“distribution” assumptions when we figure out 
Average case

 When we execute 
k = partition(pivot, i, j), 

all positions i..j are equally likely places for the 
pivot to end up

 Thus NL is equally likely to have each of the 
values 0, 1, 2, … N-1

 NL+NR = N-1; thus NR is also equally likely to have 
each of the values  0, 1, 2, … N-1

 Thus T(NL)= T(NR) =

Q8
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 T(N) = 
 Multiply both sides by N
 Rewrite, substituting N-1 for N
 Subtract the equations and forget the insignificant 

(in terms of big-oh)  -1:
◦ NT(N) = (N+1)T(N-1) + 2N

 Can we rearrange so that we can telescope?

Q9-10

 NT(N) = (N+1)T(N-1) + 2N
 Divide both sides by N(N+1)
 Write formulas for T(N), T(N-1),T(N-2) …T(2).
 Add the terms and rearrange.
 Notice the familiar series
 Multiply both sides by N+1.

Q11-13
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 Best, worst, average time for Quicksort
 What causes the worst case?

 Avoid the worst case
◦ Select pivot from the middle
◦ Randomly select pivot
◦ Median of 3 pivot selection.
◦ Median of k pivot selection

 "Switch over" to a simpler sorting method 
(insertion) when the subarray size gets small

Weiss's code does Median of 3 and switchover to 
insertion sort at 10.
◦ Linked from schedule page

What does the official Java Quicksort do? See the source!


