
2/4/2014

1

Quicksort algorithm
Average case analysis

ht
tp

:/
/w

ww
.x

kc
d.

co
m

/1
18

5/

Stacksort connects to StackOverflow, searches for “sort a list”,
and downloads and runs code snippets until the list is sorted.

2/4/2014

2

 For any recurrence relation of the form:

with

 The solution is:

 Note: Replace O with everywhere in the
theorem!

Theorem 7.5 in Weiss

Q1-3

 Check out now:
◦ www.sorting-algorithms.com

 http://maven.smith.edu/~thiebaut/java/sort/
demo.html

 http://www.cs.ubc.ca/~harrison/Java/sorting
-demo.html

2/4/2014

3

 Invented by C.A.R. “Tony” Hoare in 1961*
 Very widely used
 Somewhat complex, but fairly easy to

understand
◦ Like in basketball, it’s all

about planting a good pivot.

Image from http://www.ultimate-youth-basketball-guide.com/pivot-foot.html.

A quote from Tony Hoare:
There are two ways of constructing a
software design: One way is to make it
so simple that there are obviously no
deficiencies, and the other way is to
make it so complicated that there are
no obvious deficiencies. The first
method is far more difficult.

2/4/2014

4

Q4

// Assume min and max indices are low and high
pivot = a[low]
i = low+1, j = high

while (true) {
while (a[i] < pivot) i++
while (a[j] > pivot) j‐‐
if (i >= j) break
swap(a, i, j)

}
swap(a, low, j) // moves the pivot to the

// correct place

return j

Q5

2/4/2014

5

 Running time for partition of N elements is (N)
 Quicksort Running time:
◦ call partition. Get two subarrays of sizes NL and NR

(what is the relationship between NL, NR, and N?)
◦ Then Quicksort the smaller parts
◦ T(N) = N + T(NL) + T(NR)

 Quicksort Best case: write and solve the recurrence
 Quicksort Worst case: write and solve the

recurrence
 average: a little bit trickier
◦ We have to be careful how we measure

Q6-7

 Let T(N) be the average # of comparisons of
array elements needed to quicksort N
elements.

 What is T(0)? T(1)?
 Otherwise T(N) is the sum of
◦ time for partition
◦ average time to quicksort left part: T(NL)
◦ average time to quicksort right part: T(NR)

 T(N) = N + T(NL) + T(NR)

2/4/2014

6

 Weiss shows how not to count it:
 What if half of the time we picked the smallest

element as the partitioning element and the other
half of the time we picked the largest?

 Then on the average, NL = N/2 and NR =N/2,
◦ but that doesn’t give a true picture of these worst-case

scenarios.
◦ In every case, either NL = N-1 or NR =N-1

 We always need to make some kind of
“distribution” assumptions when we figure out
Average case

 When we execute
k = partition(pivot, i, j),

all positions i..j are equally likely places for the
pivot to end up

 Thus NL is equally likely to have each of the
values 0, 1, 2, … N-1

 NL+NR = N-1; thus NR is also equally likely to have
each of the values 0, 1, 2, … N-1

 Thus T(NL)= T(NR) =

Q8

2/4/2014

7

 T(N) =
 Multiply both sides by N
 Rewrite, substituting N-1 for N
 Subtract the equations and forget the insignificant

(in terms of big-oh) -1:
◦ NT(N) = (N+1)T(N-1) + 2N

 Can we rearrange so that we can telescope?

Q9-10

 NT(N) = (N+1)T(N-1) + 2N
 Divide both sides by N(N+1)
 Write formulas for T(N), T(N-1),T(N-2) …T(2).
 Add the terms and rearrange.
 Notice the familiar series
 Multiply both sides by N+1.

Q11-13

2/4/2014

8

 Best, worst, average time for Quicksort
 What causes the worst case?

 Avoid the worst case
◦ Select pivot from the middle
◦ Randomly select pivot
◦ Median of 3 pivot selection.
◦ Median of k pivot selection

 "Switch over" to a simpler sorting method
(insertion) when the subarray size gets small

Weiss's code does Median of 3 and switchover to
insertion sort at 10.
◦ Linked from schedule page

What does the official Java Quicksort do? See the source!

