CSSE 230

Extended Binary Trees Recurrence relations

Reminders/Announcements

- Today:
- Extended Binary Trees (basis for much of WA8, which includes induction proofs and no programming)
- Recurrence relations, part 1
- EditorTrees worktime?
- Next session: exam 2 (evening)

Extended Binary Trees (EBT's)

Bringing new life to Null nodes! nul/ external nodes as leaves

- Not a single NULL_NODE, but many NULL_NODEs
- An Extended Binary tree is either

- an external (null) node, or
- an (internal) root node and two EBTs T_{L} and T_{R}.
- We draw internal nodes as circles and external nodes as squares.
- Generic picture and detailed picture.
" This is simply an alternative way of viewing binary trees, in which we view the external nodes as "places" where a search can end or an element can be inserted.

A property of EBTs

- Property $\mathrm{P}(\mathrm{N})$: For any $\mathrm{N}>=0$, any EBT with N internal nodes has ____-_ external nodes.
- Proof by strong induction, based on the recursive definition.
- A notation for this problem: $\operatorname{IN}(T), \operatorname{EN}(T)$
- Note that, like a lot of other simple examples, this one can be done without induction.
- But one purpose of this exercise is practice with strong induction, especially on binary trees.
- What is the crux of any induction proof?
- Finding a way to relate the properties for larger values (in this case larger trees) to the property for smaller values (smaller trees). Do the proof now.

Introduction to Recurrence Relations

A technique for analyzing recursive algorithms

Recap: Maximum Contiguous Subsequence Sum problem

Problem definition: Given a non-empty sequence of n (possibly negative) integers $A_{1}, A_{2}, \ldots, A_{n}$, find the maximum consecutive subsequence $S_{i, j}=\sum_{k=i}^{j} A_{k}$, and the corresponding values of i and j.

Divide and Conquer Approach

- Split the sequence in half
- Where can the maximum subsequence appear?
- Three possibilities :
- entirely in the first half,
- entirely in the second half, or
- begins in the first half and ends in the second half

This leads to a recursive algorithm

1. Using recursion, find the maximum sum of first half of sequence
2. Using recursion, find the maximum sum of second half of sequence
3. Compute the max of all sums that begin in the first half and end in the second half

- (Use a couple of loops for this)

4. Choose the largest of these three numbers
private static int maxsumRec (int $[$] a, int left, int right) $12-13$

Analysis?

- Use a Recurrence Relation
- Typically written T(N), gives the run-time as a function of N
- Two (or more) part definition:
- Base case, like $T(1)=c$
- Recursive case, like $T(N)=T(N / 2)$

So, what's the recurrence relation for the recursive MCSS algorithm?
private static int maxsumRec (int [] a, int left, int right)

```
int maxLeftBordersum = 0, maxRightBordersum = 0;
```

int maxLeftBordersum = 0, maxRightBordersum = 0;
int leftBordersum = 0, rightBordersum = 0;
int leftBordersum = 0, rightBordersum = 0;
int center = (left + right) / 2;
int center = (left + right) / 2;
if(left == right) // Base case
if(left == right) // Base case
return a[left] > 0 ? a[left] : 0;
return a[left] > 0 ? a[left] : 0;
int maxLeftSum = maxSumRec(a, left, center);
int maxLeftSum = maxSumRec(a, left, center);
int maxRightsum = maxSumRec(a, center + 1, right);
int maxRightsum = maxSumRec(a, center + 1, right);
for(int i = center; i >= left; i--)
for(int i = center; i >= left; i--)
{
{
leftBordersum += a[i];
leftBordersum += a[i];
if(leftBordersum > maxLeftBordersum)
if(leftBordersum > maxLeftBordersum)
maxLeftBordersum = leftBordersum;
}
for(int i = center + 1; i <= right; i++)
{
rightBordersum += a[i];
if(rightBorderSum > maxRightBordersum)
maxRightBordersum = rightBordersum;
}
return max3(maxLeftSum, maxRightSum,
maxLeftBordersum + maxRightBordersum);

```

\section*{Recurrence Relation, Formally}
- An equation (or inequality) that relates the \(\mathrm{n}^{\text {th }}\) element of a sequence to certain of its predecessors (recursive case)
- Includes an initial condition (base case)
- Solution: A function of \(n\).
- Similar to differential equation, but discrete instead of continuous
- Some solution techniques are similar to diff. eq. solution techniques

\section*{Solve Simple Recurrence Relations}

One strategy: guess and check
- Examples:
- \(\mathrm{T}(0)=0, \mathrm{~T}(\mathrm{~N})=2+\mathrm{T}(\mathrm{N}-1)\)
- \(\mathrm{T}(0)=1, \mathrm{~T}(\mathrm{~N})=2 \mathrm{~T}(\mathrm{~N}-1)\)
- \(\mathrm{T}(0)=\mathrm{T}(1)=1, \mathrm{~T}(\mathrm{~N})=\mathrm{T}(\mathrm{N}-2)+\mathrm{T}(\mathrm{N}-1)\)
- \(T(0)=1, T(N)=N T(N-1)\)
- \(T(0)=0, T(N)=T(N-1)+N\)
- \(T(1)=1, T(N)=2 T(N / 2)+N\)
(just consider the cases where \(\mathrm{N}=2^{\mathrm{k}}\) )

\section*{Solution Strategies for Recurrence Relations}
- Guess and check
- Substitution
- Telescoping and iteration
- The "master" method
- We'll see the last 3 next time


\section*{Editor Trees Work Time}```

