
AVL trees and rotations 
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 See schedule page 



 Operations (insert, delete, search) are 
O(height) 
 

 Tree height is O(log n) if perfectly 
balanced 
◦ But maintaining perfect balance is O(n) 
 

 Height-balanced trees are still O(log n) 
◦ For T with height h, N(T) ≤ Fib(h+3) – 1 
◦ So H < 1.44 log (N+2) – 1.328 * 
 

 AVL (Adelson-Velskii and Landis) trees 
maintain height-balance using 
rotations 

 Are rotations O(log n)? We’ll see… 
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Different representations for / = \ : 
 Just two bits in a low-level language 
 Enum in a higher-level language 

or / = \ or 



 Assume tree is height-balanced before 
insertion 

 Insert as usual for a BST 
 Move up from the newly inserted node 

to the lowest “unbalanced” node (if any) 
◦ Use the balance code to detect unbalance - 

how? 
 Do an appropriate rotation to balance 

the sub-tree rooted at this unbalanced 
node 

/ 



 For example, a single left rotation: 



 
 Two basic cases 
◦ “See saw” case:  
 Too-tall sub-tree is on the outside 
 So tip the see saw so it’s level 
◦ “Suck in your gut” case: 
 Too-tall sub-tree is in the middle 
 Pull its root up a level 
 



Diagrams are from Data Structures by E.M. Reingold and W.J. Hansen 

Unbalanced node 

Middle sub-tree 
attaches to lower node 

of the “see saw” 

Q2-3 



Weiss calls this “right-left double rotation” 

Unbalanced node 

Pulled up 
Split between the 

nodes pushed down 

Q4-5 



 Write the method: 
 static BalancedBinaryNode singleRotateLeft ( 
    BalancedBinaryNode parent,   /* A */    
    BalancedBinaryNode child     /* B */  ) { 
 
} 

 Returns a reference to the new root of this subtree. 
 Don’t forget to set the balanceCode fields of the nodes. 
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 Write the method: 
 BalancedBinaryNode doubleRotateRight ( 
  BalancedBinaryNode parent,     /* A */    
  BalancedBinaryNode child,      /* C */   
  BalancedBinaryNode grandChild  /* B */ ) { 
 
 
} 

 Returns a reference to the new root of this subtree. 
 Rotation is mirror image of double rotation from an 

earlier slide 
 



 Both kinds of rotation leave height the same 
as before the insertion! 
 

 Is insertion plus rotation cost really O(log N)? 

Q7-10 

Insertion/deletion  
    in AVL Tree:                     O(log n) 
Find the imbalance point (if any):          O(log n) 
Single or double rotation:           O(1) 
     in deletion case, may have 
     to do O(log N) rotations 
Total work:             O(log n) 
 



Height-balanced, but not AVL 
Insertion/deletion by index, not by 

comparing elements 
 

How do we find the kth element? 



 Gives the in-order position of this node 
within its own subtree 
◦ i.e., the size of its left subtree 

 
 

 How would we do findKth? 
 

 Insert and delete start similarly 

0-based 
indexing 





Read the specification and check 
out the starting code 

 
Milestone 1 due Tuesday 
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