
AVL trees and rotations

/

 See schedule page

 Operations (insert, delete, search) are
O(height)

 Tree height is O(log n) if perfectly
balanced
◦ But maintaining perfect balance is O(n)

 Height-balanced trees are still O(log n)
◦ For T with height h, N(T) ≤ Fib(h+3) – 1
◦ So H < 1.44 log (N+2) – 1.328 *

 AVL (Adelson-Velskii and Landis) trees
maintain height-balance using
rotations

 Are rotations O(log n)? We’ll see…

Q1

Different representations for / = \ :
 Just two bits in a low-level language
 Enum in a higher-level language

or / = \ or

 Assume tree is height-balanced before
insertion

 Insert as usual for a BST
 Move up from the newly inserted node

to the lowest “unbalanced” node (if any)
◦ Use the balance code to detect unbalance -

how?
 Do an appropriate rotation to balance

the sub-tree rooted at this unbalanced
node

/

 For example, a single left rotation:

 Two basic cases
◦ “See saw” case:
 Too-tall sub-tree is on the outside
 So tip the see saw so it’s level
◦ “Suck in your gut” case:
 Too-tall sub-tree is in the middle
 Pull its root up a level

Diagrams are from Data Structures by E.M. Reingold and W.J. Hansen

Unbalanced node

Middle sub-tree
attaches to lower node

of the “see saw”

Q2-3

Weiss calls this “right-left double rotation”

Unbalanced node

Pulled up
Split between the

nodes pushed down

Q4-5

 Write the method:
 static BalancedBinaryNode singleRotateLeft (
 BalancedBinaryNode parent, /* A */
 BalancedBinaryNode child /* B */) {

}

 Returns a reference to the new root of this subtree.
 Don’t forget to set the balanceCode fields of the nodes.

Q6

 Write the method:
 BalancedBinaryNode doubleRotateRight (
 BalancedBinaryNode parent, /* A */
 BalancedBinaryNode child, /* C */
 BalancedBinaryNode grandChild /* B */) {

}

 Returns a reference to the new root of this subtree.
 Rotation is mirror image of double rotation from an

earlier slide

 Both kinds of rotation leave height the same
as before the insertion!

 Is insertion plus rotation cost really O(log N)?

Q7-10

Insertion/deletion
 in AVL Tree: O(log n)
Find the imbalance point (if any): O(log n)
Single or double rotation: O(1)
 in deletion case, may have
 to do O(log N) rotations
Total work: O(log n)

Height-balanced, but not AVL
Insertion/deletion by index, not by

comparing elements

How do we find the kth element?

 Gives the in-order position of this node
within its own subtree
◦ i.e., the size of its left subtree

 How would we do findKth?

 Insert and delete start similarly

0-based
indexing

Read the specification and check
out the starting code

Milestone 1 due Tuesday

	CSSE 230 Day 13
	Announcements
	Summary: for fast tree operations, we must keep the tree somewhat balanced in O(log n) time
	AVL nodes are just like BinaryNodes, �but also have an extra “balance code”
	AVL Tree (Re)balancing Act
	Four types of rotations are required to remove different cases of tree imbalances
	We rotate by pulling the “too tall” sub-tree up and pushing the “too short” sub-tree down
	Single Left Rotation
	Double Left Rotation
	Your turn work with a partner
	More practice (sometime after class)
	O(log N)?
	Term Project: EditorTrees
	We can find the kth element easily �if we add a rank field to BinaryNode
	Slide Number 15
	Get with your EditorTrees team

