CSSE 230 Day 12

 Height-Balanced Trees
Today's Agenda

- Finding k-th smallest in BST
- Another induction example
- Recap: The need for balanced trees
- Analysis of worst case for height-balanced (AVL) trees

BST with Rank

》)
Explore the concept How do Find and Insert work?

BSTs are an efficient way to represent ordered lists

- What's the performance of
- insertion? $\mathrm{O}(\mathrm{h}(\mathrm{T})$)
- deletion? $\mathrm{O}(\mathrm{h}(\mathrm{T}))$
- find? $O(h(T))$
- iteration? O(n) to iterate through all
-What about finding the $\mathrm{k}^{\text {th }}$ smallest element?

We can find the kth smallest element easily if we add a rank field to BinaryNode

- Gives the in-order position of this node within its own subtree
- i.e., the size of its left subtree

```
0-based
indexing
```

- How would we do find $K_{t h}$?
- Insert and de7ete start similarly

Another induction example (we'll use this result)

- Recall our definition of the Fibonacci numbers:
- $F_{0}=0, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}$
- An exercise from the textbook
7.8 Prove by induction the formula

$$
F_{N}=\frac{1}{\sqrt{5}}\left(\left(\frac{(1+\sqrt{5})}{2}\right)^{N}-\left(\frac{1-\sqrt{5}}{2}\right)^{N}\right)
$$

Recall: How to show that property $\mathrm{P}(\mathrm{n})$ is true for all $\mathrm{n} \geq \mathrm{n}_{0}$:
(1) Show the base cases) directly
(2) Show that if $P(j)$ is true for all j with $n_{0} \leq j<k$, then $P(k)$ is true also

Details of step 2:
a. Write down the induction assumption for this specific problem
b. Write down what you need to show
c. Show it, using the induction assumption

Review: The number of nodes in a tree with height $h(T)$ is bounded

Review: Therefore the height of a tree with $N(T)$ nodes is also bounded

We want to keep trees balanced so that the run run time of BST algorithms is minimized

- BST algorithms are $O(h(T))$
- Minimum value of $h(T)$ is $\lceil\log (N(T)+1)\rceil-1$
- Can we rearrange the tree after an insertion to guarantee that $h(T)$ is always minimized?

But keeping complete balance is too expensive!

- Height of the tree can vary from $\log \mathrm{N}$ to N
- Where would J go in this tree?
- What if we keep the tree perfectly balanced?
- so height is always proportional to $\log \mathrm{N}$
- What does it take to balance that tree?
- Keeping completely balanced is too expensive:
- $\mathrm{O}(\mathrm{N})$ to rebalance after insertion or deletion

Still height-balanced?

More precisely, a binary tree T is height balanced if
T is empty, or if
\mid height $\left(T_{L}\right)$ - height $\left(T_{R}\right) \mid \leq 1$, and
T_{L} and T_{R} are both height balanced.

What is the tallest height-balanced tree with N nodes?

Is it taller than a completely balanced tree?

- Consider the dual concept: find the minimum number of nodes for height h.

A binary search tree \mathbf{T} is height balanced if
T is empty, or if
\mid height $\left(T_{L}\right)$ - height $\left(T_{R}\right) \mid \leq 1$, and
T_{L} and T_{R} are both height balanced. maintains balance using "rotations"

- Named for authors of original paper, Adelson-Velskii and Landis (1962).
- Max. height of an AVL tree with N nodes is: $H<1.44 \log (N+2)-1.328=O(\log N)$

Our goal is to rebalance an AVL tree after insert/delete in $\mathrm{O}(\log n)$ time

- Why?
- Worst cases for BST operations are $\mathbf{O}(\mathrm{h}(\mathrm{T})$) - find, insert, and delete
- $h(T)$ can vary from $O(\log N)$ to $O(N)$
- Height of a height-balanced tree is $\mathbf{O}(\log \mathrm{N})$
- So if we can rebalance after insert or delete in $\mathrm{O}(\log \mathrm{N})$, then all operations are $\mathrm{O}(\log \mathrm{N})$

Doublets: What's it all about?

Welcome to Doublets, a game of "verbal torture." these!
Enter starting word: flour
Enter ending word: bread
Enter chain manager (s: stack, q: queue, x : exit): s
Chain: [flour, floor, flood, blood, bloom, gloom, groom, broom, brood, broad, bread]
Length: 11
Candidates: 16
Max size: 6
Enter starting word: wet
Enter ending word: dry
Enter chain manager (s: stack, q: queue, x: exit): q
Chain: [wet, set, sat, say, day, dry]
Length: 6
Candidates: 82651
Max size: 847047
Enter starting word: whe
Enter ending word: rye
The word "oat" is not valid. Please try again.
Enter starting word: owner
Enter ending word: bribe
Enter chain manager (s: stack, q: queue, x: exit): s
No doublet chain exists from owner to bribe.
Enter starting word: C
Enter chain manager (s: stack, q: queue, x : exit): \boldsymbol{x} Goodbye!

StackChainManager: depth-first search QueueChainManager: breadth-first search PriorityQueueChainManager: First extend the chain that ends with a word that is closest to the ending word.

A Link is the collection of all words that can be reached from a given word in one step. I.e. all words that can be made from the given word by substituting a single letter.

A Chain is a sequence of words (no duplicates) such that each word can be made from the one before it by a single letter substitution.

A ChainManager stores a collection of chains, and tries to extend one at a time, with a goal of extending to the ending word.

Review of key exam questions (if time)

