

CSSE 230 Day 10

Size vs height in a Binary Tree

Announcements

- Today:
- Size vs height of trees: patterns and proofs
- Q/A and worktime for BSTs
- BST deadline extended to Friday night
- No late days
- HW4 deadline extended to Monday night
- Cut from 8 to 3 problems
- No late days
- Exam: next Wednesday, 15 Jan, 7-9 pm:
- See me today if an impossible time conflict
- Written ($\sim 50 \%$):
- big O/ θ / Ω : true/false, using definition, code analysis
- Choosing an ADT to solve a given problem
- Implementing one ADT using another ADT
- Programming (~50\%):
- Binary Trees / Binary Search Trees

Questions?

Size and Height of Binary Trees

- Notation:
- Let T be a tree
- Write $h(T)$ for the height of the tree, and
- $N(T)$ for the size (i.e., number of nodes) of the tree
- Given $h(T)$, what are the bounds on $N(T)$? - $N(T)<$ _______ and $N(T)>$ _______
- Given $N(T)$, what are the bounds on $h(T)$?
- Solve each inequality for $h(T)$ and combine

Extreme Trees

- A tree with the maximum number of nodes for its height is a full tree.
- Its height is $\mathrm{O}(\log \mathrm{N})$
- A tree with the minimum number of nodes for its height is essentially a \qquad
\circ Its height is $\mathrm{O}(\mathrm{N})$
- Height matters!
- Recall that the algorithms for search, insertion, and deletion in a binary search tree are $\mathrm{O}(\mathrm{h}(\mathrm{T})$)

To prove recursive properties (on trees), we use a technique called mathematical induction

- Actually, we use a variant called strong induction:

The former governor of California

Strong Induction

- To prove that $\mathrm{p}(\mathrm{n})$ is true for all $\mathrm{n}>=\mathrm{n}_{0}$:
- Prove that $p\left(n_{0}\right)$ is true (base case), and
- For all $\mathrm{k}>\mathrm{n}_{0}$, prove that if we assume $\mathrm{p}(\mathrm{j})$ is true for $\mathrm{n}_{0} \leq \mathrm{j}<\mathrm{k}$, then $\mathrm{p}(\mathrm{k})$ is also true
- An analogy for those who took MA275:
- Regular induction uses the previous domino to knock down the next
- Strong induction uses all the previous dominos to knock down the next!
- Warmup: prove the arithmetic series formula
- Actual: prove the formula for $N(T)$

Current assignment

Questions and answers
Worktime

