CSSE 230 Day 6

Java Collections Framework Intro to Trees

Pay careful attention to the ACM Code of Ethics essay

- Part of written assignment 3
 - Examine the Code of Ethics of the ACM
 - Focus on property rights
 - Write a short reaction (up to 1 page single-spaced)
 - Details are in the assignment

Thoughts on Teaming

Two Key Rules

- No prima donnas
 - Working way ahead, finishing on your own, or changing the team's work without discussion:
 - harms the education of your teammates
- No laggards
 - Coasting by on your team's work:
 - harms your education
- Both extremes
 - are selfish
 - may result in a failing grade for you on the project

Grading of Team Projects

- I'll assign an overall grade to the project
- Grades of individuals will be adjusted up or down based on team members' assessments
- At the end of the project each of you will:
 - Rate each member of the team, including yourself
 - Write a short Performance Evaluation of each team member with evidence that backs up the rating
 - Positives
 - Key negatives

Ratings

- Excellent—Consistently went above and beyond: tutored teammates, carried more than his/her fair share of the load
- Very good—Consistently did what he/she was supposed to do, very well prepared and cooperative
- Satisfactory—Usually did what he/she was supposed to do, acceptably prepared and cooperative
- Ordinary—Often did what he/she was supposed to do, minimally prepared and cooperative
- Marginal—Sometimes failed to show up or complete tasks, rarely prepared
- Deficient—Often failed to show up or complete tasks, rarely prepared Unsatisfactory—Consistently failed to show up or complete tasks, unprepared
- Superficial—Practically no participation
 No show—No participation at all

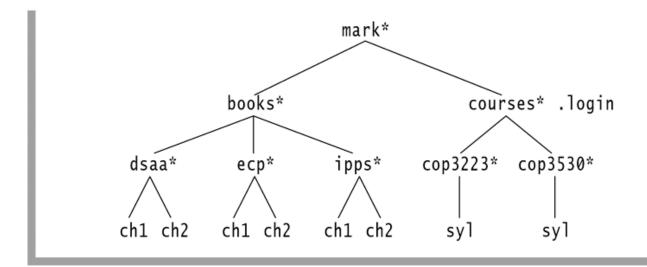
Questions?

Reminder: Specifying an ADT in Java

Done with an interface, e.g., java.util.Collection java.util

Interface Collection<E>

boolean	$\frac{\mathbf{add}}{\mathbf{E}}$ (E o) Ensures that this collection contains the specified element (option)	onal operation).
boolean	1 11	<u></u>
boolean	isEmpty() Returns true if this collection contains no elements.	
boolean	remove (Object o) Removes a single instance of the specified element from this collect (optional operation).	ion, if it is present
int	size () Returns the number of elements in this collection.	A "facto
<u>Iterator</u> < <u>E</u> >	<u>iterator</u> () Returns an iterator over the elements in this collection.	method


Trees

Introduction and terminology

Trees in everyday (geek) life

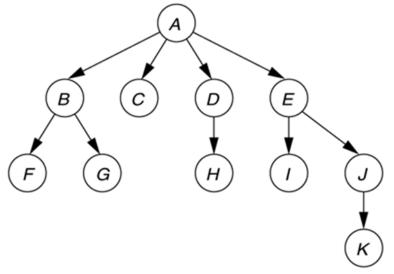

- Class hierarchy tree (single inheritance only)
- Directory tree in a file system

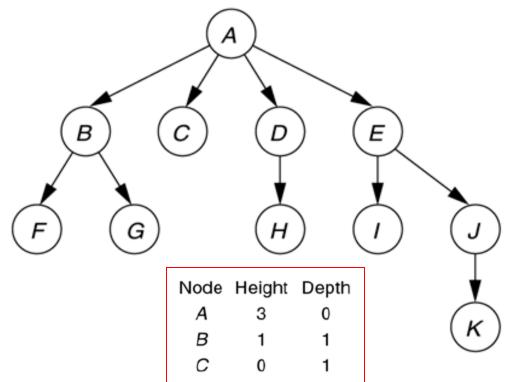
figure 18.4A Unix directory

A General Tree—Global View

- A collection of nodes
- Nodes are connected by directed edges.
 - One special root node has no incoming edges
 - All other nodes have exactly one incoming edge
- One way that Computer Scientists are odd is that our trees usually have their root at the top!

Tree Terminology

- Parent
- Child
- Grandparent
- Sibling
- Ancestors and descendants
- Proper ancestors, proper descendants
- Subtree
- Leaf, interior node
- Depth and height of a node
- Height of a tree

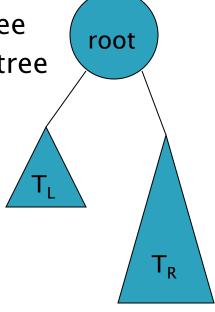


Node height and depth examples

figure 18.1

A tree, with height and depth information

The height of a tree is the height of its root node.



Which is larger, the sum of the heights or the sum of the depths of all nodes in a tree?

	9	
Α	3	0
В	1	1
C	0	1
D	1	1
E	2	1
F	0	2
G	0	2
Н	0	2
1	0	2
J	1	2
K	0	3

Binary Tree: Recursive definition

- A Binary Tree is either
 - empty, or
 - consists of:
 - a distinguished node called the root, which contains an element, and
 - A left subtree T_L, which is a binary tree
 - A right subtree T_R, which is a binary tree

Growing Trees

Let's implement a BinaryTree<T> class including methods size(), height(), duplicate(), and contains(T).