

Maximum Contiguous Subsequence Sum

Maximum Contiguous Subsequence Sum

A deceptively deep problem with a surprising solution.

$$
\{-3,4,2,1,-8,-6,4,5,-2\}
$$

Why do we look at this problem?

- It's interesting
- Analyzing the obvious solution is instructive:
- We can make the program more efficient

A Nice Algorithm Analysis Example

- Problem: Given a sequence of numbers, find the maximum sum of a contiguous subsequence.

Consider:

- What if all the numbers were positive?

- What if they all were negative?
- What if we left out "contiguous"?

Formal Definition: Maximum

Q2-4 Contiguous Subsequence Sum

Problem definition: Given a non-empty
sequence of n (possibly negative) integers
$A_{1}, A_{2}, \ldots, A_{n}$, find the maximum consecutive
subsequence $S_{i, j}=\sum_{k=i}^{j} A_{k}$, and the
corresponding values of i and j.

- $\operatorname{In}\{-2,11,-4,13,-5,2\}, S_{2,4}=$?
- In $\{1,-3,4,-2,-1,6\}$, what is MCSS?
- If every element is negative, what's the MCSS?

1-based indexing

A quick-and-dirty algorithm

- Design one right now.
- Efficiency doesn't matter.
- It has to be easy to understand.
- 3 minutes
- Examples to consider:
- $\{-3,4,2,1,-8,-6,4,5,-2\}$
- $\{5,6,-3,2,8,4,-12,7,2\}$

First Algorithm

Find the sums of

 al/ subsequences```
public final class MaxSubTest {
 private static int seqStart = 0;
 private static int seqEnd = 0;
```

    /* First maximum contiguous subsequence sum algorithm.
        * seqStart and seqEnd represent the actual best sequence.
        */
    public static int maxSubSum1 (int [ ] a ) \{
    i: beginning of
subsequence int maxSum $=0$; subsequence

$$
\text { for (int } i=0 ; i<a . l e n g t h ; i++)
$$

 subsequence

> if( thisSum $>$ maxSum ) \{ maxSum $=$ thissum;
seqStart $=1$; seqEnd $=j$; \} \} return maxSum; \}

How many times (exactly, as a function of $\mathrm{N}=$ a.length) will that statement execute?

## Analysis of this Algorithm

- What statement is executed the most often?
, How many times?
, How many triples, ( $\mathbf{i}, \boldsymbol{j}, \boldsymbol{k}$ ) with $\mathbf{1 \leq i \leq k \leq j \leq n ~ ? ~}$
//In the analysis we use " n " as a shorthand for "a.length "
for ( int $i=0 ; i<a . l e n g t h ; i++$ )
for (int $j=i ; j<a . l e n g t h ; ~ j++) ~\{$ int thisSum $=0$;
for (int $k=i ; k<=j ; k++$ ) thisSum += a[k ];


## Three ways to find the sum

- By hand
- Using Maple
- A tangent (Related to urns and probabilities?)

Counting is (surprisingly) hard!
, How many triples, ( $\mathbf{i , j , k}$ ) with $1 \leq i \leq k \leq j \leq n ?$

- What is that as a summation?

- Let's solve it by hand to practice with sums


## Hidden: One part of the process

 will ho

Then we can solve for the last term to get a formula that we need on the next slide:

$$
\sum_{j=i}^{n} j=\sum_{j=1}^{n} j-\sum_{j=1}^{i-1} j=\frac{n(n+1)}{2}-\frac{(i-1) i}{2}
$$

## Hidden

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(\sum_{j=i}^{n}\left(\sum_{k=i}^{j} 1\right)\right)=\sum_{i=1}^{n}\left(\sum_{j=i}^{n}(j-i+1)\right)=\sum_{i=1}^{n}\left(\sum_{j=i}^{n} j-\sum_{j=i}^{n} i+\sum_{j=i}^{n} 1\right) \\
= & \sum_{i=1}^{n}\left(\frac{n(n+1)}{2}-\frac{(i-1) i}{2}-i(n-i+1)+(n-i+1)\right) \\
= & \sum_{i=1}^{n}\left(\frac{n(n+1)}{2}+n+1-i\left(n+\frac{3}{2}\right)+\frac{1}{2} i^{2}\right)=\left(\frac{n(n+1)}{2}+n+1\right) \sum_{i=1}^{n} 1-\left(n+\frac{3}{2}\right) \sum_{i=1}^{n} i+\frac{1}{2} \sum_{i=1}^{n} i^{2} \\
= & \left(\frac{n^{2}+3 n+2}{2}\right) n-\left(n+\frac{3}{2}\right) \frac{n(n+1)}{2}+\frac{1}{2} \frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

## Simplify the sum



- When it gets down to "just Algebra", Maple is our friend


## Help from Maple, part 1

Simplifying the last step of the monster sum
$>$ simplify $\left(\left(n^{\wedge} 2+3 * n+2\right) / 2 * n\right.$
$-(\mathrm{n}+3 / 2) * \mathrm{n} *(\mathrm{n}+1) / 2+1 / 2 * \mathrm{n} *(\mathrm{n}+1) *(2 * \mathrm{n}+1) / 6)$;

$$
\frac{1}{6} n^{3}+\frac{1}{2} n^{2}+\frac{1}{3} n
$$

$>$ factor (8) ;

$$
\frac{1}{6}(n+2) n(n+1)
$$

## Help from Maple, part 2

Letting Maple do the whole thing for us:
sum (sum (sum (1, k=i..j), j=i..n), i=1..n);
$\frac{1}{2}(n+1) n^{2}+2(n+1) n+\frac{1}{3} n+\frac{5}{6}-\frac{1}{2} n(n+1)^{2}-(n+1)^{2}$

$$
+\frac{1}{6}(n+1)^{3}-\frac{1}{2} n^{2}
$$

> factor(simplify(8));

$$
\frac{1}{6}(n+2) n(n+1)
$$

# We get same answer if we sum from 0 to $n-1$, instead of 1 to $n$ 

factor (simplify(sum(sum(sum(1,k=i..j), j=i..n), $\mathbf{i}=\mathbf{1}$. . $\mathbf{n}$ )) );

$$
\frac{n(n+2)(n+1)}{6}
$$

factor(simplify(sum(sum(sum(1,k=i..j), j=i..n-1), $\mathbf{i}=0 . . \mathbf{n}-\mathbf{1})$ ) ;

$$
\frac{n(n+2)(n+1)}{6}
$$

## Interlude

- Computer Science is no more about computers than astronomy is about $\qquad$


## Donald Knuth

## Interlude

Computer Science is no more about computers than astronomy is about telescopes.

Donald Knuth

"Magic" Tangent:
Another (clever) way to count it
, How many triples, ( $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ ) with $1 \leq i \leq k \leq j \leq n ~ ? ~$

- The trick:
- Find a set that's easier to count that has a one-to-one correspondence with the original


## The "equivalent count" set

- We want to count the number of triples, ( $i, j, k$ ) with $1 \leq i \leq k \leq j \leq n$
- First get an urn
- Put in $n$ white balls labeled $1,2, \ldots$, n
- Put in one red ball and one blue one
- Choose 3 balls
- If red drawn, $=\min$ of other 2
- If blue drawn, = max of other 2
- What numbers do we get?

The Correspondence with
$1 \leq i \leq k \leq j \leq n$

- Choose 3 balls
- If red drawn, = min of other 2
- If blue drawn, = max of other 2


## Triple of balls Corresponding triple of numbers

| (i, k, j) | (i, k, j) |
| :---: | :---: |
| (red, i, j) | (i, i, j) |
| (blue i, j) | (i, j, j) |
| (red, blue, i) | (i, i, i) |

## How does this help?!?

There's a formula!

- It counts the ways to choose M items from a set of $P$ items "without replacement"
" P choose M " written $\mathrm{P}_{\mathrm{M}}$ or $\binom{P}{M}$ is: $\binom{P}{M}=\frac{P!}{M!(P-M)!}$
- So ${ }_{n+2} C_{3}$ is $\binom{n+2}{3}=\frac{(n+2)!}{3!(n-1)!}=\frac{n(n+1)(n+2)}{6}$

What is the main source of the simple algorithm's inefficiency?
//In the analysis we use " $n$ " as a shorthand for "a.length " for ( int $i=0 ; i<a . l e n g t h ; i++$ )
for (int j $=1 ; j<a . l e n g t h ; j++$ ) \{ int thisSum $=0$;

$$
\begin{aligned}
& \text { for (int } k=i ; k<=j ; k++) \\
& \quad \text { thisSum }+=a[k] ;
\end{aligned}
$$

- The performance is bad!


## Eliminate the most obvious inefficiency...

for (int $i=0 ; i<a . l e n g t h ; i++\}$ ( int thisSmm $=0$;
for ( int $\mathbf{j}=\mathbf{i} ; \mathbf{j}$ (a.length; j++ ) ( thisSum += a[j];
if ( thissum $>$ maxSum ) \{ maxSum = thisSum;
seqStart $=1$; seqEnd $=\mathbf{j}$;
)
)

## Can we do even better?

Tune in next time for the exciting conclusion!


