Pick up an in-class quiz from the table near the door

CSSE 230 Data Structures and Algorithm Analysis Day 1

Brief Course Intro Math Review $\sum_{i=1}^{n} i=1+2+3+\ldots+n=\frac{n^{2}+n}{2}$

Growable Array Analysis

- two visual representations

Introductions

- Roll call:
- Pronunciations and nicknames
- Where you live on campus
- You'll share more with classmates on discussion forum
- Matt:
- Here since 2005 (but in Zambia in 2011-2012)
- Taught CSSE120, 120 Robotics, 220, 221, 230, Image Recognition, Android, Cryptography, Fractals, Mechatronics, Robotics senior design

Goal: independently develop and debug software that uses correct, clear, and efficient algorithms and data structures

Our expectations

- Recall from the syllabus
- Work hard
- Take initiative in learning
- Read the text, search Javadocs, come for help
- Focus while in this class
- Start early and plan for no all-nighters
- Two assignments each week: 1 homework set and 1 major program
- Never give or use someone else's answers

Tools

- http://www.rose-
hulman.edu/class/csse/csse230/201420/Schedule/Schedule.htm: schedule, assignments, room \#s!
- www.piazza.com, not email: homework questions
- If you email, we'll usually reply, "Great question! Please post it to Piazza"
- moodle.rose-hulman.edu: gradebook, written assignment pdf turn-in

Analysis/Math Review

Notation

- Floor

$$
\lfloor x\rfloor=\text { the largest integer } \leq x
$$

- Ceiling

$$
\lceil x\rceil=\text { the smallest integer } \geq x
$$

- java. lang. Math, provides the static methods floor () and ceil()

Summations

- Summations
- general definition:

$$
\sum_{i=s}^{t} f(i)=f(s)+f(s+1)+f(s+2)+\ldots+f(t)
$$

- where f is a function, s is the start index, and t is the end index

Geometric progressions: each term is a constant multiple of the previous term

- Geometric progression: $f(i)=a^{i}$
- given an integer $n \geq 0$ and a real number $0<a \neq 1$

$$
\sum_{i=0}^{n} a^{i}=1+a+a^{2}+\ldots+a^{n}=\frac{1-a^{n+1}}{1-a} \quad \begin{gathered}
\text { Memorize } \\
\text { this } \\
\text { formula! }
\end{gathered}
$$

- geometric progressions exhibit exponential growth

Exercise: What is $\sum_{i=2}^{6} 3^{i}$?
This will be useful for today's

The sum can also be written

$$
\frac{a^{n+1}-1}{a-1}
$$

Arithmetic progressions: constant difference Most important to us: a difference of 1

- Arithmetic progressions:
- An example

Memorize this
 formula!

$$
\begin{aligned}
& \qquad \sum_{i=1}^{n} i=1+2+3+\ldots+n=\frac{n^{2}+n}{2} \\
& \text { Exercise: } \sum_{i=21}^{40} i \quad \begin{array}{l}
\text { Also useful for today's } \\
\text { Growable Arrays exercise! }
\end{array}
\end{aligned}
$$

Visual proofs of the summation formula

$$
\sum_{i=1}^{n} i=1+2+3+\ldots+n=\frac{n^{2}+n}{2}
$$

- two visual representations

Application: Find exact and big-Oh
for (i=n-1; i>0; i--) \{
find the largest element among a[0] ... a[i] ; exchange the largest element with a[i] ; \}
-How many comparisons of array elements are done?
-How many times are array elements copied?
(When you think you have the answers, compare with a partner)

Growable Array Analysis

An exercise in doubling, done by pairs of students

Growable Arrays

```
// Read an unlimited number of String; return a String [ ]
```

// Read an unlimited number of String; return a String []
public static String [] getStrings() {
public static String [] getStrings() {
Scanner in = new Scanner(System.in);
Scanner in = new Scanner(System.in);
String [] array = new String[5];
String [] array = new String[5];
int itemsRead = 0;
int itemsRead = 0;
System.out.println("Enter any number of strings, one per line; "
System.out.println("Enter any number of strings, one per line; "
System.out.println("Terminate with empty line: ");
System.out.println("Terminate with empty line: ");
while(in.hasNextLine()) {
String oneLine = in.nextLine(); strings there will be
We don't know in advance how many
if(oneLine.equals(""))
break;
if(itemsRead = array.length)
array = resize(array, array.length * 2);
array[itemsRead++] = oneLine;
}
System.out.println("Done reading");
return resize(array, itemsRead);
}
How does resize() work?
What is the main "overhead cost" of resizing?

```

\section*{Work on Growable Array Exercise}
- Work with a partner
- Hand in the document before you leave today if possible
- Get help as needed from me and the assistants.```

