
1

The ColorizeFSM project
This is a pair programming assignment that you must do with
your assigned partner. You must use pair programming
techniques. That is, you cannot simply divide the work and
program independently. Developing the ability to create
software in pairs is vital to your success, both in this course
and professionally.

I suggest that you quickly read this entire document once to
get an overview, then read it again slowly a couple of times to
get the details.

In this project, you will write a program that takes a legal Java
program (in a single file) as input and produces an HTML file
that “colorizes” the following elements of the program:

• string literals (red),
• character literals (magenta),
• single-line comments (green),
• multi-line comments (cyan),
• keywords (blue) and
• non-keyword identifiers (orange).

You will do ONLY the Finite State Machine (FSM) that
processes the input file, character by character; we have
written all the other supporting code, including methods
that write HTML.

For example, suppose the input file is as shown in the first
picture to the right. Then the correct HTML output is shown

in the picture on the NEXT page. (Note that three long lines
wrap in that picture). The Eclipse browser renders that HTML
as shown in the second picture to the right.

It is also important that you write your program in such a way
that no possible input can cause the program to get into an
infinite loop.

Proceed as follows:

/*
 * Multiline comment.
 * Yep.
 */
public class __HelloWorldTest {
 public static void main(String args[]) {
 // Testing, 1, 2, 3.
 System.out.println("Hello," + " \"World\"!");
 System.out.println('?');
 }

}

/*
 * Multiline comment.
 * Yep.
 */
public class __HelloWorldTest {
 public static void main(String args[]) {
 // Testing, 1, 2, 3.
 System.out.println("Hello," + " \"World\"!");
 System.out.println('?');
 }
}

2

1. Begin drawing a FSM that represents how to process the
Java file. Each Event is the next character in the Java file.
Just do 2 or 3 states for now.

For example, do the Start state and the edges out of it: a
double quote (which leads to the String Literal state), a
slash (which leads to a Maybe Comment state), etc. Then
do one of the states you just drew. Stop after 2 or 3
states.

2. Now complete this partial diagram for the ColorizeFSM
(that’s a PDF, here is a Word version), by labeled the arcs

not yet labeled and filling in empty boxes with appropriate
actions.

3. After you do the partial diagram yourself, check out the
ColorizeFSM project if you have not already done so.
Example the FSM.pdf file and the FSM diagram in it. It
should be similar to the one you did.

While this is certainly not the only possible correct FSM for
doing the required colorizing, it is the FSM that you will
implement.

4. Examine the Colorize class and the FiniteStateMachine

<html>
<style type="text/css">
 .slcomment { color: green; }
 .mlcomment { color: cyan; }
 .string { color: red; }
 .character { color: magenta; }
 .keyword { color: blue; }
 .identifier { color: orange; }
</style>
<body>
<pre>
/*
 * Multiline comment.
 * Yep.
 */
public class __HelloWorldTest {
 public static void <span
class="identifier">main(String args[]) {
 // Testing, 1, 2, 3.
 System.out.println(<span
class="string">"Hello," + " \"World\"!");
 System.out.println(<span
class="character">'?');
 }
}

</pre></body></html>

3

class. You will do all your work in the latter.

In doing your work, you will use the following methods
from the HTMLColorWriter class:

beginColor endColor write

Use only those methods from that class; no further
understanding of HTML is required. These methods use
CSS (Cascading Style Sheets) to color things rather than
using the HTML font tag (this is the modern way to do
formatting in web documents).

5. We supplied many test cases. Ask your instructor to show
you how to use them.

6. Implement and test FiniteStateMachine. To test it for a
particular input file, run the Colorize.java program as a
Java Application. You can either change the code to use a
different input file, or enter the file location as a
command-line argument. To test it for all of our test files
(you should certainly do this before your final submission),
run ColorizeTest.java as a JUnit Test.

